Lesson Worksheet: Complex Number Conjugates Mathematics • 12th Grade

In this worksheet, we will practice using the properties of conjugate numbers to evaluate an expression.

Q1:

How do you find the conjugate of a complex number?

  • AChange the sign of both the real and imaginary parts.
  • BSwap the real and imaginary parts.
  • CChange the sign of its imaginary part.
  • DSwap the real and imaginary parts, then change the sign of them both.
  • EChange the sign of its real part.

Q2:

What is the conjugate of the complex number 2βˆ’7𝑖?

  • A7+2𝑖
  • Bβˆ’7+2𝑖
  • Cβˆ’2βˆ’7𝑖
  • Dβˆ’2+7𝑖
  • E2+7𝑖

Q3:

If 𝑧 is a real number, what will its conjugate be equal to?

  • Aβˆ’π‘§π‘–
  • Bβˆ’π‘§
  • C𝑧
  • D𝑧𝑖

Q4:

If 𝑠=8+2𝑖, what is 𝑠+𝑠?

Q5:

Find the complex conjugate of βˆ’7βˆ’π‘– and the sum of this number with its complex conjugate.

  • Aβˆ’7+𝑖, 14𝑖
  • B7βˆ’π‘–, βˆ’2𝑖
  • C7+𝑖, 0
  • Dβˆ’7+𝑖, βˆ’14

Q6:

Find the complex conjugate of 1+𝑖 and the product of this number with its complex conjugate.

  • A1βˆ’π‘–, 1
  • Bβˆ’1βˆ’π‘–, 0
  • C1βˆ’π‘–, 2
  • D1βˆ’π‘–, 0

Q7:

Solve 𝑧𝑧+π‘§βˆ’π‘§=4+2𝑖.

  • A𝑧=√3βˆ’π‘–, 𝑧=βˆ’βˆš3βˆ’π‘–
  • B𝑧=1+π‘–βˆš3, 𝑧=1βˆ’π‘–βˆš3
  • C𝑧=βˆ’βˆš3+𝑖, 𝑧=√3βˆ’π‘–
  • D𝑧=1+π‘–βˆš3, 𝑧=βˆ’1+π‘–βˆš3
  • E𝑧=√3+𝑖, 𝑧=βˆ’βˆš3+𝑖

Q8:

Simplify (1βˆ’π‘–)βˆ’(1+𝑖)(1βˆ’π‘–)+(1+𝑖).

Q9:

Find the complex number 𝑧 that satisfies the equations 𝑧+𝑧=βˆ’5,π‘§βˆ’π‘§=3𝑖.

  • A𝑧=βˆ’52βˆ’32𝑖
  • B𝑧=5βˆ’3𝑖
  • C𝑧=βˆ’32βˆ’52𝑖
  • D𝑧=3+5𝑖
  • E𝑧=βˆ’32+52𝑖

Q10:

Consider 𝑧=5βˆ’π‘–βˆš3 and 𝑀=√2+π‘–βˆš5.

Calculate 𝑧 and 𝑀.

  • A𝑧=βˆ’5+π‘–βˆš3, 𝑀=βˆ’βˆš2βˆ’π‘–βˆš5
  • B𝑧=5+π‘–βˆš3, 𝑀=√2βˆ’π‘–βˆš5
  • C𝑧=5βˆ’π‘–βˆš3, 𝑀=√2+π‘–βˆš5
  • D𝑧=βˆ’5βˆ’π‘–βˆš3, 𝑀=βˆ’βˆš2+π‘–βˆš5
  • E𝑧=√3βˆ’5𝑖, 𝑀=√5+π‘–βˆš2

Find 𝑧+𝑀 and (𝑧+𝑀).

  • A𝑧+𝑀=5+√2+ο€»βˆš3βˆ’βˆš5𝑖, (𝑧+𝑀)=5+√2+ο€»βˆš3βˆ’βˆš5𝑖
  • B𝑧+𝑀=5+√2+ο€»βˆš3βˆ’βˆš5𝑖, (𝑧+𝑀)=5+√2βˆ’ο€»βˆš3βˆ’βˆš5𝑖
  • C𝑧+𝑀=5+√2+ο€»βˆš3+√5𝑖, (𝑧+𝑀)=5+√2βˆ’ο€»βˆš3+√5𝑖
  • D𝑧+𝑀=5+√2βˆ’ο€»βˆš3βˆ’βˆš5𝑖, (𝑧+𝑀)=5+√2βˆ’ο€»βˆš3βˆ’βˆš5𝑖
  • E𝑧+𝑀=√3βˆ’βˆš5+ο€»5+√2𝑖, (𝑧+𝑀)=√3βˆ’βˆš5+ο€»5+√2𝑖

Find 𝑧𝑀 and (𝑧𝑀).

  • A𝑧𝑀=5√2+2√15+ο€»5√5βˆ’βˆš6𝑖, (𝑧𝑀)=5√2+2√15βˆ’ο€»5√5+√6𝑖
  • B𝑧𝑀=5√2+√15βˆ’ο€»5√5βˆ’βˆš6𝑖, (𝑧𝑀)=5√2+√15βˆ’ο€»5√5βˆ’βˆš6𝑖
  • C𝑧𝑀=5√2+2√15βˆ’ο€»5√5+√6𝑖, (𝑧𝑀)=5√2+2√15+ο€»5√5+√6𝑖
  • D𝑧𝑀=5√5βˆ’βˆš6βˆ’ο€»5√2+2√15𝑖, (𝑧𝑀)=5√5βˆ’βˆš6+ο€»5√2+2√15𝑖
  • E𝑧𝑀=5√2+√15+ο€»5√5βˆ’βˆš6𝑖, (𝑧𝑀)=5√2+√15+ο€»5√5βˆ’βˆš6𝑖

Practice Means Progress

Download the Nagwa Practice app to access 31 additional questions for this lesson!

scan me!

Nagwa uses cookies to ensure you get the best experience on our website. Learn more about our Privacy Policy.