Lesson Worksheet: Equation of a Circle Mathematics • 11th Grade

In this worksheet, we will practice finding the equation of a circle using its center and a given point or the radius and vice versa.


Write the equation of the circle of center (8,4) and radius 9.

  • A(π‘₯βˆ’8)+(π‘¦βˆ’4)=81
  • B(π‘₯βˆ’8)+(π‘¦βˆ’4)=9
  • C(π‘₯+8)+(𝑦+4)=9
  • D(π‘₯+8)+(𝑦+4)=81


In the figure below, find the equation of the circle.

  • A(π‘₯βˆ’5)+(π‘¦βˆ’4)=25
  • B(π‘₯+5)+(𝑦+4)=25
  • C(π‘₯βˆ’5)+(π‘¦βˆ’4)=5
  • D(π‘₯+5)+(𝑦+4)=5


Give the general form of the equation of the circle of center (8,βˆ’2) and diameter 10.

  • Aπ‘₯+π‘¦βˆ’16π‘₯+4π‘¦βˆ’32=0
  • Bπ‘₯+𝑦+16π‘₯βˆ’4π‘¦βˆ’32=0
  • Cπ‘₯+π‘¦βˆ’16π‘₯+4𝑦+43=0
  • Dπ‘₯+𝑦+16π‘₯βˆ’4𝑦+43=0


A circle has center (2,2) and goes through the point (6,3). Find the equation of the circle.

  • A(π‘₯βˆ’2)+(π‘¦βˆ’2)=17
  • B(π‘₯βˆ’2)+(𝑦+2)=17
  • C(π‘₯+2)βˆ’(𝑦+2)=17
  • D(π‘₯+2)βˆ’(𝑦+2)=√17
  • E(π‘₯βˆ’2)+(π‘¦βˆ’2)=√17


Find the equation of the circle represented by the given figure.

  • A(π‘₯βˆ’4)+(𝑦+7)=16
  • B(π‘₯βˆ’4)+(𝑦+7)=81
  • C(π‘₯βˆ’7)+(π‘¦βˆ’4)=49
  • D(π‘₯+4)+(π‘¦βˆ’7)=81


Find the center and radius of the circle (π‘₯+4)+(π‘¦βˆ’2)=225.

  • ACenter: (βˆ’4,2), radius: 15
  • BCenter: (2,βˆ’4), radius: 15
  • CCenter: (βˆ’4,2), radius: 225
  • DCenter: (4,βˆ’2), radius: 225
  • ECenter: (βˆ’2,4), radius: 225


Find the center and the radius of the circle (π‘₯βˆ’2)+(𝑦+8)βˆ’100=0.

  • ACenter: (2,βˆ’8), radius: 10
  • BCenter: (βˆ’8,2), radius: 10
  • CCenter: (βˆ’2,8), radius: 10
  • DCenter: (2,βˆ’8), radius: 100
  • ECenter: (βˆ’8,2), radius: 100


By completing the square, find the center and radius of the circle π‘₯+6π‘₯+π‘¦βˆ’4𝑦+8=0.

  • ACenter: (2,βˆ’3), radius: 5
  • BCenter: (βˆ’3,2), radius: 5
  • CCenter: (3,βˆ’2), radius: 5
  • DCenter: (2,βˆ’3), radius: √5
  • ECenter: (βˆ’3,2), radius: √5


The blueprint of a city is in a Cartesian coordinate system, where each unit represents 5 meters. Given that the circle π‘₯+𝑦+2π‘₯+18𝑦+44=0 represents one of the city’s squares, determine the area of the square to nearest square meter. Consider ο€Όπœ‹=227.


Determine the general form of the equation of the circle that passes through the two points 𝐴(βˆ’7,1) and 𝐡(0,6), given that the circle’s center lies on the straight line 6π‘₯βˆ’π‘¦=βˆ’43.

  • Aπ‘₯+𝑦+12π‘₯βˆ’14𝑦+48=0
  • Bπ‘₯+𝑦+14π‘₯βˆ’2𝑦+13=0
  • Cπ‘₯+π‘¦βˆ’12π‘¦βˆ’1=0
  • Dπ‘₯+π‘¦βˆ’12π‘¦βˆ’38=0

This lesson includes 93 additional questions and 556 additional question variations for subscribers.

Nagwa uses cookies to ensure you get the best experience on our website. Learn more about our Privacy Policy.