Nagwa uses cookies to ensure you get the best experience on our website. Learn more about our Privacy Policy.

Start Practicing

Worksheet: Graphing Monomials

Q1:

Consider the function 𝑓 ( π‘₯ ) = 1 1 0 π‘₯ 4 .

Which of the following shows the graph of 𝑓 ?

  • A
  • B
  • C
  • D

What is the 𝑦 -intercept of the function?

What is the domain of 𝑓 ?

  • A [ 0 , ∞ )
  • B ( βˆ’ ∞ , 0 ]
  • C ℝ

What is the range of 𝑓 ?

  • A [ 0 , ∞ )
  • B ℝ
  • C ( βˆ’ ∞ , 0 ]

On what interval is the function increasing?

  • A ( 0 , ∞ )
  • B ( βˆ’ ∞ , 0 )
  • C ℝ

On what interval is the function decreasing?

  • A ( 0 , ∞ )
  • B ℝ
  • C ( βˆ’ ∞ , 0 )

What happens to the value of 𝑓 ( π‘₯ ) as π‘₯ β†’ ∞ ?

  • A 𝑓 ( π‘₯ ) β†’ βˆ’ ∞
  • B 𝑓 ( π‘₯ ) β†’ ∞

What happens to the value of 𝑓 ( π‘₯ ) as π‘₯ β†’ βˆ’ ∞ ?

  • A 𝑓 ( π‘₯ ) β†’ ∞
  • B 𝑓 ( π‘₯ ) β†’ βˆ’ ∞

Q2:

Consider the function 𝑓 ( π‘₯ ) = βˆ’ 1 1 0 0 π‘₯ 7 .

Which of the following shows the graph of 𝑓 ?

  • A
  • B
  • C
  • D

What is the 𝑦 -intercept of the function?

What is the domain of 𝑓 ?

  • A [ 0 , ∞ )
  • B ( βˆ’ ∞ , 0 ]
  • C ℝ

What is the range of 𝑓 ?

  • A ℝ
  • B [ 0 , ∞ )
  • C ( βˆ’ ∞ , 0 ]

On what interval is the function increasing?

  • AThere are no intervals on which the function is increasing.
  • B ( 0 , ∞ )
  • C ℝ

On what interval is the function decreasing?

  • AThere are no intervals on which the function is decreasing.
  • B ( βˆ’ ∞ , 0 )
  • C ℝ

What happens to the value of 𝑓 ( π‘₯ ) as π‘₯ β†’ ∞ ?

  • A 𝑓 ( π‘₯ ) β†’ ∞
  • B 𝑓 ( π‘₯ ) β†’ βˆ’ ∞

What happens to the value of 𝑓 ( π‘₯ ) as π‘₯ β†’ βˆ’ ∞ ?

  • A 𝑓 ( π‘₯ ) β†’ ∞
  • B 𝑓 ( π‘₯ ) β†’ βˆ’ ∞