Question Video: Calculating the Velocity of an Object in Motion under Gravity | Nagwa Question Video: Calculating the Velocity of an Object in Motion under Gravity | Nagwa

Question Video: Calculating the Velocity of an Object in Motion under Gravity

An artillery shell is fired vertically upward at a target 200 m vertically above the ground. When the shell is 100 m above the ground, it has a speed of 100 m/s. What is the speed of the shell when it hits the target? Neglect drag forces on the shell.

02:55

Video Transcript

An artillery shell is fired vertically upward at a target 200 meters vertically above the ground. When the shell is 100 meters above the ground, it has a speed of 100 meters per second. What is the speed of the shell when it hits the target? Neglect drag forces on the shell.

We can name the speed that the shell has when it hits the target 𝑣 sub 𝑇 and begin in our solution by drawing a diagram of this process. In this example, we have a vertically pointed artillery canon firing a shell straight up. When the shell passes the 100-meter elevation mark, it’s moving at 100 meters per second. We want to know, when it reaches its target at 200 meters, what is its velocity, 𝑣 sub 𝑇. In this scenario, we can define vertical motion as motion beginning at ground level and positive in the upward direction. When the shell leaves the canon, it will be subject to only one force, the force of gravity acting down on it. Because of our sign convention, we write 𝑔 as negative 9.8 meters per second squared. Since the artillery shell is accelerating constantly, due only to the effects of 𝑔, we know that the kinematic equations apply to this scenario.

Looking over these equations, in terms of the variables they’re written in, we want to solve for a final velocity 𝑣 sub 𝑓. That’s what 𝑣 sub 𝑇 represents. Both of the first two equations written show that variable. So let’s see if there’s more information that can help us choose between these two. Looking at our diagram, based on our problem statement, we see that we know distances in the vertical direction. And we also know the acceleration acting on the shell. When it comes to the variables involved, the only difference between the first and the second kinematic equation have to do with time versus distance. Since we’re given distance, but not time, let’s choose to work with the second equation.

Writing it in terms of our variables, we can say that 𝑣 sub 𝑇 squared is equal to 𝑣, the velocity of the shell when it’s at 100 meters elevation, plus two times 𝑔 times 𝑑. Where 𝑑 is the distance between that 100- and 200-meter mark. Taking the square root of both sides of the equation and given 𝑣 and 𝑔 and recognizing that 𝑑 must be equal to 100 meters, we’re ready to plug in and solve for 𝑣 sub 𝑇. With these values plugged in, notice how important the signs are, that we established a sign convention and followed that with these values. It’s the sign convention that tells us that 𝑣 is positive, 𝑔 is negative, and 𝑑 is positive. When we calculate this expression, we find that, to three significant figures, it’s 89.7 meters per second. That’s the velocity of the shell in the upward direction when it reaches the target.

Join Nagwa Classes

Attend live sessions on Nagwa Classes to boost your learning with guidance and advice from an expert teacher!

  • Interactive Sessions
  • Chat & Messaging
  • Realistic Exam Questions

Nagwa uses cookies to ensure you get the best experience on our website. Learn more about our Privacy Policy