### Video Transcript

Write the quadratic equation
represented by the graph shown.

In order to write this equation,
letβs consider some features of the graph of quadratic functions, shape,
π¦-intercept, the roots, and the vertex. We also have the general form π of
π₯ equals ππ₯ squared plus ππ₯ plus π or the vertex form π of π₯ equals π times
π₯ minus β squared plus π. Considering the shape, we see that
this parabola opens downward. And that means the π-value will be
less than zero. It will be negative. The π¦-intercept is located here at
zero, zero, which mean that the roots here will just be one root at zero, zero. And it happens to be the vertex,
which is the maximum point of this function.

If we use vertex form, we know that
the vertex is found at the point β, π. And so we can take this vertex of
zero, zero and plug it into that general vertex form. When we simplify that, we find out
that the function is π times π₯ squared. And that means we need to know what
π is. We know that the π-value is
negative. But in order to find what it
exactly is, we need to consider another point from the graph. We could use one of the other
points we know from the graph. For example, we know that the graph
crosses the point two, negative four. So we plug in two for π₯ and
negative four for π of π₯. And then we have negative four
equals four π.

From there, we divide both sides of
the equation by four. And we see that negative one equals
π or π equals negative one. And we plug that value back in for
π, which gives us negative one times π₯ squared. And we can simplify that to just be
negative π₯ squared. So we found the quadratic equation
represented by the graph shown to be π of π₯ equals negative π₯ squared.