### Video Transcript

In this video, we’re gonna look at some expressions which add or subtract
radical or surd terms. We’ll be looking at expressions where these terms can be gathered as
like terms so that the expressions can be simplified.

Radical or surd terms that don’t simplify can be combined or collected in
algebraic expressions in much the same way that you would gather variable terms like three 𝑥
and five 𝑥 or two 𝑦 and seven 𝑦 and so on. Looking at this example, simplify the square root of seven plus the square
root of seven.

Now let’s imagine that we let 𝑥 equal root seven.
Then we could express root seven plus root seven in a different way. It
will be 𝑥 plus 𝑥. Now if you saw 𝑥 plus 𝑥, you’d quite happily gather
those like terms you’d add one 𝑥 to another 𝑥 and you’d have two 𝑥s.

And since we just said up here that 𝑥 was equal to the square root of seven,
two 𝑥 means two times the square root of seven,
which we write like this: two root seven.
That’s important to remember that a big two in front of that means that it’s
two times the square root of seven.

And you have to be careful not to confuse that with this expression, which is
the small two in the square root sign, which means the square root of seven.
Here’s another example. Simplify the cube root of three plus two times the
cube root of three plus three times the cube root of three.

Now that first term, just the cube root of three. That means we’ve got
one of them, so we could say it’s one times the cube root of three.
So we’ve got one of the cube root of threes; we’ve got two more of the cube root of
threes; and then we’ve got three more on top of that, these cube root of threes. So in total, one plus two is
three plus three is six. We’ve got six of them; six times the cube root of three.

So that’s our answer. Now we’ve got to simplify the square root of eight plus three times the square
root of two minus four times the square root of two.

Now these second two terms here are clearly like terms. We’ve got three
lots of the square root of two and then we’re taking away four lots of the square
root of two.

So we’ve got three of them and we take away four we’re left with negative one
of them or we just write negative root two. So this becomes root eight minus root
two.
But wait! Eight has a square factor; four is a square number and it’s a factor
of eight so root eight can be written as the square root of four times two.

And that can be written as the square root of four times the square root
of two. Now the square root of four is two,
so the square root of four times the square root of two is two times root
two
or as we’d normally write it, just two root two.

So root eight minus root two can be rewritten as two root
two minus one root two, and two root two minus one root two is just one root
two.
Although obviously we wouldn’t bother writing the one in front of it, so it’s
just the square root of two.

Now we’ve got a slightly more complicated expression involving root eleven and
also just some normal numbers not involving radicals or surds. So six and negative three are the normal numbers. And four root eleven and two root eleven are like terms
because they’ve both involved the square root of eleven; they’re radicals or surds.

So we’ve collected the like terms and now we can combine them six take
away three is three and four root elevens plus another two root elevens gives me six root
elevens,
so that’s our answer.

So here’s another example, this time with parentheses. Simplify two plus six
root five plus nine plus eight root five.
Now here the parentheses aren’t really having effect. They’re telling you to
do the calculations in a particular order, but the operations are all additions. And because of the associativity of addition, it will make no difference if
you do them in a different order.

So we’ll just remove the parentheses for now and then we’ll collect the like
terms. Well two and nine are the rational numbers, and six root five and eight root five are the radical or surd terms.

So now we’ve collected the like terms, we can combine them. And two and nine
make eleven and then six root fives plus another eight root fives gives us fourteen root fives.
So that’s the simplified version of our original expression.

So let’s look at our last example then. Simplify root seven minus two minus five
minus three root seven. Now here, the parentheses are important. The first set are not really
having an effect because set- root seven minus two is effectively already evaluated so you
can’t simplify that any further. But the second set of parentheses are very important.

So we can remove the first set of parentheses. But that negative sign, we’re
taking away five and we’re taking away negative three root seven.
So that looks like this. Now if we’re taking away negative three root
seven that’s the same as adding three root seven.

So we’re now at a situation where we can identify the like terms. So these are
the ones with the radicals, the root sevens or the surds, and these are just the normal rational
numbers. So we’ve got one root seven plus another three root sevens giving us four root sevens, and we’ve got negative two take away another five, which is negative
seven.

So that’s the simplified version of our original expression. So to summarise what we’ve done, you can treat radicals or surds as if they
were algebraic terms. So for example if we had three root seven plus five root seven, we could let
𝑥 equal root seven.

And we can think of that then as being three times 𝑥 plus five times 𝑥.
So if we’ve got three of them and five of them, that makes eight of them. And then we can substitute our root seven back in for 𝑥 giving us eight root seven.

And you need to think carefully about parentheses. As we’ve seen sometimes, they’re not really having an effect and you can just
remove them, and other times they’re having a big effect and you have to be very very careful
and look out for signs especially.