### Video Transcript

In this video, weâ€™re going to be
looking at how we can deal with changes in velocity by learning about
acceleration.

So first of all, what even is
acceleration? Well, acceleration is defined as
the rate of change of velocity. So what do we even mean by
this? Well, letâ€™s imagine that weâ€™ve got
a car initially at rest, which means that it has a velocity of zero metres per
second. Then letâ€™s say sometime later, the
car starts moving. Letâ€™s say that 10 seconds later,
the car is now moving at 10 metres per second. And letâ€™s say that itâ€™s moving
towards the right.

So initially, we had a car which,
letâ€™s say, at the beginning of its journey or, in other words, at zero seconds was
stationary but just beginning to move. And then 10 seconds later, the car
was moving right at 10 metres per second. Well, in a situation like this, we
can work out the acceleration of the car. And the way we would go about doing
this is by saying that the acceleration of the car, which weâ€™ll call đť‘Ž, is equal to
the change in velocity of the car â€” which is represented by Î”đť‘Ł, Î” is the letter
used to represent change in and đť‘Ł represents velocity â€” and we divide this change
in velocity by the change in time from the beginning of the journey to the end of
the journey.

And this is what we mean when we
say that the acceleration is defined as the rate of change of velocity. The numerator in this fraction,
Î”đť‘Ł, represents the change of velocity. And when we divide it by the amount
of time taken for that change in velocity to occur, then weâ€™re working out the rate
at which this change in velocity occurs because the rate of change of something
talks about how quickly that something changes over time.

So coming back to our car
situation, we could say that the acceleration of the car, đť‘Ž, is equal to the change
in velocity over its journey, which can be given by the final velocity minus the
initial velocity. So thatâ€™s 10 metres per second
minus zero metres per second. And we divide this by the change in
time over the journey. Now the time at the end of the
journey was 10 seconds. And the time at the beginning of
the journey was zero seconds. We just arbitrarily decided to
choose zero seconds as the beginning of the journey. But the point is that the end of
the journey was 10 seconds after that, which can be found as 10 seconds, thatâ€™s the
end of the journey time, minus zero seconds. Thatâ€™s the beginning of the journey
time.

Now, a couple of things to note
here. First of all, when weâ€™re
calculating the change in velocity, weâ€™ve just seen that this is equal to the final
velocity minus the initial velocity. Similarly, the change in time is
equal to the final time minus the initial time. But an important thing to note is
that velocity is a vector quantity. And we can recall that vector
quantities have magnitude or size and direction. So when weâ€™re calculating the
change in velocity, weâ€™ve basically got 10 metres per second to the right minus zero
metres per second. And zero metres per second doesnâ€™t
have a direction because there is no velocity. And so, the acceleration is also
going to be towards the right. And acceleration, therefore,
happens to be a vector quantity as well. In other words, directionality
becomes important here.

But, anyway, so to calculate the
acceleration of the car, letâ€™s first evaluate all of the stuff in the parentheses in
the numerator and denominator. In the numerator, we had 10 metres
per second minus zero metres per second, which just becomes 10 metres per
second. And the denominator, which was 10
seconds minus zero seconds, becomes 10 seconds. At which point, we have the
acceleration of the car to be 10 metres per second divided by 10 seconds. In other words, the speed of the
car changes by 10 metres per second in 10 seconds. And when we evaluate the numbers,
we get 10 divided by 10, which is one. Which means that we can say that
the acceleration of the car is one metre per second per second. In other words, the speed of the
car is increasing by one metre per second every second. Itâ€™s getting faster and faster.

Now, letâ€™s take a quick look at the
units of this acceleration. Weâ€™ve got the units of velocity,
thatâ€™s metres per second, divided by the unit of time, thatâ€™s seconds. And we can also write this as one
metre per second, the unit of velocity, divided by seconds, the unit of time. But then, the way to evaluate all
of this stuff in the parentheses is to imagine, first of all, that the seconds is
actually seconds divided by one. So itâ€™s a fraction. And then to say that the divide
sign becomes a multiplication sign. And this fraction inverts.

In other words, what we had
earlier, that was metres per second divided by seconds, is equivalent to metres per
second multiplied by one over seconds. At which point, weâ€™re left with
metres in the numerator because metres times one is metres. And then at the denominator, weâ€™ve
got seconds times seconds which is seconds squared. And so, we can write this unit as
metres per seconds squared. Hence, we can say that the
acceleration of the car is one metre per seconds squared. And of course, because itâ€™s a
vector quantity we mustnâ€™t forget the direction in which the car is
accelerating. Itâ€™s accelerating to the right.

So at this point, we can see that
this equation here is really quite useful. It helps us to calculate the
acceleration of an object. The acceleration is given as the
rate of change of velocity or the change in velocity divided by the change in time,
where the change in velocity is defined as the final velocity, đť‘Ł subscript final,
minus the initial velocity, đť‘Ł subscript initial. And similarly, the change in time
is defined as the final time minus the initial time. In other words, what weâ€™re finding
here with Î”đť‘ˇ is the time interval or the amount of time it took for the change in
velocity to occur.

Now, looking at this equation a
little bit more deeply, we can figure out a couple of things. And both of them are related to the
fact that velocity is a vector. And therefore, acceleration is a
vector as well. Firstly, we can see that if change
in velocity is negative or, in other words, the object is slowing down, the final
velocity is less than the initial velocity, then the acceleration is going to be
negative as well.

To show what we mean by this, letâ€™s
think about a car once again. But this time, the car is initially
moving at 10 metres per second to the right, right at the beginning of its
journey. And itâ€™s slowing down. So 10 seconds later, itâ€™s at zero
metres per second. In other words, itâ€™s
stationary. Well, in this case, whatâ€™s the
acceleration of the car going to be?

We can say that the acceleration of
the car is equal to the change in velocity â€” which is equal to the final velocity,
zero metres per second, minus the initial velocity, 10 metres per second â€” and we
divide this by the change in time. Well, the change in time is the
final time, 10 seconds, minus the initial time, zero seconds. And so we say, thatâ€™s the change in
time. Well, in this case, the numerator
ends up being negative 10 metres per second. And the denominator ends up being
10 seconds. In which case, the acceleration of
the car turns out to be negative one metres per second squared. Or, in other words, the car is
slowing down or itâ€™s decelerating.

Another way to think about this is
that the acceleration of the car is negative, if the direction of the objectâ€™s
velocity is opposite to the direction of the objectâ€™s change in velocity. And so thatâ€™s the same as saying
the object is initially moving this way. But it starts speeding up in this
direction. Which means itâ€™s slowing down in
this direction. Now, that can be quite confusing to
think about. But the idea is that the
acceleration is in the opposite direction to the objectâ€™s velocity. And hence, itâ€™s slowing down. So weâ€™ve seen that acceleration can
be negative.

Now, another thing to realise is
that because velocity is a vector quantity, we can think about a car, this time
weâ€™re looking from above onto the car, moving at, say, 10 metres per second to the
right until it decides to change direction. The car is still moving at 10
metres per second along the entire length of its journey. Itâ€™s just the direction in which
itâ€™s moving at 10 metres per second changes. So is this going to lead to an
acceleration?

Well, to answer that question,
letâ€™s remember, once again, that velocity is a vector quantity. And vector quantities have
magnitude and direction. Therefore, although the velocity is
always 10 metres per second, itâ€™s not just that. Itâ€™s 10 metres per second in
changing directions. Therefore, the velocity is
changing. And if the velocity is changing,
there is a Î”đť‘Ł. And therefore, the car must be
accelerating.

Now, this can also be a difficult
concept to wrap your head around. The fact that even though a car is
moving constantly at 10 metres per second, it is still accelerating. This can lead to some very
interesting phenomena. But for now, letâ€™s familiarise
ourselves more with a basic definition of acceleration. Letâ€™s do this by looking at an
example.

An object accelerates at five
metres per second squared for 0.25 seconds. How much does its velocity
increase?

Okay, so in this question weâ€™ve
been told that weâ€™ve got an object. Letâ€™s say this blob is our
object. And weâ€™ve been told that itâ€™s
accelerating. Letâ€™s say itâ€™s accelerating to the
right at five metres per second squared for a total time of 0.25 seconds. So letâ€™s say that the object ends
up here at the end of the 0.25 seconds. Now, weâ€™ve been asked to find out
how much its velocity increases by. In other words, we can say that,
initially, the object had some velocity, which weâ€™ll call đť‘Ł one. And at the end of the 0.25 seconds,
it had another velocity which weâ€™ll call đť‘Ł two.

Weâ€™ve been asked to find out the
difference between đť‘Ł two and đť‘Ł one because weâ€™ve been asked to find out how much
the velocity of the object increases by. Or, in other words, weâ€™ve been
asked to find the change in velocity of the object because we use Î” to represent
change in and đť‘Ł to represent velocity, where of course this change in velocity is
the same thing as the final velocity, đť‘Ł two, minus the initial velocity, đť‘Ł
one. And we donâ€™t know what this is. Now, itâ€™s important to note that we
donâ€™t actually need to figure out the individual values of đť‘Ł two and đť‘Ł one. We just need to find the difference
between them, Î”đť‘Ł. And the way we can do this is to
recall the definition of acceleration.

Acceleration, which weâ€™ll call đť‘Ž,
is defined as the rate of change of velocity which, in other words, is the change in
velocity of an object divided by the change in time over which this velocity change
is occurring. In other words, if we were to say
that this object starts moving at, for example, three oâ€™clock in the afternoon. Then 0.25 seconds later, so thatâ€™s
three oâ€™clock plus 0.25 seconds, is the final point at which weâ€™ll consider the
object. And so weâ€™ve been asked to find out
the change in velocity of the object over this 0.25 second time interval. In other words then, we can say
that the change in time between the start and the finish is actually 0.25 seconds,
which is what weâ€™ve been told in the question. Weâ€™ve been told that the object is
accelerating at five metres per second squared for 0.25 seconds.

So in this case, we know the
acceleration and we know the time interval. And weâ€™ve been asked to find out
Î”đť‘Ł, the change in velocity. So to do this, we need to rearrange
the equation. We can do this by multiplying both
sides of the equation by Î”đť‘ˇ, which means that Î”đť‘ˇ cancels on the right-hand
side. And so, weâ€™ve only got Î”đť‘Ł left on
the right-hand side and Î”đť‘ˇ multiplied by đť‘Ž on the left. Or, we can move the right-hand side
to the left and the left-hand side to the right, which gives us Î”đť‘Ł is equal to Î”đť‘ˇ
times đť‘Ž. Or, we can write it as đť‘Ž times
Î”đť‘ˇ. And then, we can substitute in the
values for đť‘Ž and for Î”đť‘ˇ. When we do that, we get Î”đť‘Ł is
equal to five metres per second squared multiplied by 0.25 seconds.

Considering the units very quickly,
we see that weâ€™ve got metres per second squared multiplied by seconds. In which case, a power of seconds
in the numerator cancels with one of the powers of seconds in the denominator. And what weâ€™re left with is metres
divided by one power of seconds. Or, in other words, metres per
second which is the unit of velocity. And this is good because weâ€™re
actually finding the change in velocity. So all thatâ€™s left to do now is to
evaluate five times 0.25 which ends up being 1.25. And hence, weâ€™ve found our final
answer. The velocity of the object changes
by or, more specifically, increases by 1.25 metres per second.

And the reason that we know the
velocity is increasing is because weâ€™ve been told that the object is accelerating at
five metres per second squared. The fact that the acceleration is
positive means that the acceleration is in the same direction as the velocity. Therefore, the object is only going
to speed up. And hence, the velocity is
increasing.

Okay, so having now looked at an
example, letâ€™s summarise what weâ€™ve spoken about in this lesson.

We firstly saw that acceleration is
defined as the rate of change of velocity. Symbolically, this can be written
as đť‘Ž, the acceleration, is equal to the change in velocity, Î”đť‘Ł, divided by the
change in time or the time interval over which this change in velocity occurs,
Î”đť‘ˇ. Secondly, we saw that acceleration
is a vector quantity. This means that it has magnitude or
size and direction. Thirdly, we saw that acceleration
can be positive when the object in question is speeding up or it can be negative
when the object is slowing down.

If the acceleration and the
velocity of the object are in the same direction, then it speeds up and the
acceleration is positive. And if the acceleration is in the
opposite direction to the objectâ€™s velocity, then itâ€™s negative and the object is
slowing down. And finally, we saw that
acceleration has units of metres per second squared or, of course, any other
equivalent units. As long as thereâ€™s a unit of
distance in the numerator and two powers of a time unit in the denominator, then
that is a unit of acceleration, for example, kilometres per hour squared. So this is how we can use the
concept of acceleration to deal with changes in velocity.