Video Transcript
Simplify cos π΄ minus π΅ minus cos
π΄ plus π΅.
In order to simplify this
expression, we firstly need to recall two of our compound-angle identities. Cos π΄ minus π΅ is equal to cos π΄
cos π΅ plus sin π΄ sin π΅. Cos π΄ plus π΅, on the other hand,
is equal to cos π΄ cos π΅ minus sin π΄ sin π΅. We can now substitute these
identities into our expression. Our expression becomes cos π΄ cos
π΅ plus sin π΄ sin π΅ minus cos π΄ cos π΅ minus sin π΄ sin π΅.
As weβre subtracting the two terms
inside the parentheses, this simplifies to become negative cos π΄ cos π΅ plus sin π΄
sin π΅. Subtracting a negative term
produces a positive term. At this stage, we can then collect
or group like terms. Cos π΄ cos π΅ minus cos π΄ cos π΅
is equal to zero. Sin π΄ sin π΅ plus sin π΄ sin π΅ is
equal to two sin π΄ sin π΅. This is the simplified version of
cos π΄ minus π΅ minus cos π΄ plus π΅.