Question Video: Comparing Two Horizontal Lines on a Displacement–Time Graph | Nagwa Question Video: Comparing Two Horizontal Lines on a Displacement–Time Graph | Nagwa

Question Video: Comparing Two Horizontal Lines on a Displacement–Time Graph Physics • First Year of Secondary School

The change in the displacement of two objects with time is shown in the graph. The gray arrows in the diagram are the same length. Which of the following statements about the speeds and velocities of the two objects is correct? [A] Their speeds are the same, but their velocities are different. [B] Both their speeds and velocities are the same. [C] Their velocities are the same, but their speeds are different. [D] Both their speeds and velocities are different.

01:59

Video Transcript

The change in the displacement of two objects with time is shown in the graph. The gray arrows in the diagram are the same length. Which of the following statements about the speeds and velocities of the two objects is correct? (A) Their speeds are the same, but their velocities are different. (B) Both their speeds and velocities are the same. (C) Their velocities are the same, but their speeds are different. (D) Both their speeds and velocities are different.

This question is asking us about the speeds and velocities of two objects whose motion is shown on a displacement–time graph. We can see that the two objects, red and blue, start at different positions. The blue object starts at some positive value of displacement and the red at some negative displacement value.

Let’s recall that the velocity of an object is given by the slope of its line on a displacement–time graph. Two lines with equal slopes therefore correspond to two objects moving with equal velocities. We′re told that the two gray arrows on this displacement–time graph are the same length as each other, which means that both the red and blue lines have equal slopes to each other. In fact, we can see that both these lines are horizontal, which means that the displacement of each object is not changing with time. Therefore, not only do the objects have equal velocities to each other, but both velocities are equal to zero.

Now, let’s recall that the speed of an object is equal to the magnitude of that object’s velocity. If an object has a velocity of zero, then it must also have a speed of zero. That means that both these two objects must have a speed of zero, and so their speeds are also equal. We have found then that the objects have both the same speed and the same velocity as each other, since both objects are stationary.

The correct answer is therefore given in option (B). Both their speeds and velocities are the same.

Join Nagwa Classes

Attend live sessions on Nagwa Classes to boost your learning with guidance and advice from an expert teacher!

  • Interactive Sessions
  • Chat & Messaging
  • Realistic Exam Questions

Nagwa uses cookies to ensure you get the best experience on our website. Learn more about our Privacy Policy