### Video Transcript

In this video, we will learn about
the quantum numbers that are used to describe an electron in an atom or ion.

Firstly, letβs define what a
quantum number is. The word sounds quite strange to
begin with. On the surface, a quantum number is
simply any number in a series of numbers that are all defined by the same rule. For instance, the positive integers
are all round counting numbers, like one, two, three, four, and so on. But the numbers in between, like
2.5 and π, are not positive integers, so theyβre not quantum numbers within this
rule.

We can also think of quantum
numbers as quantized numbers. There is an infinite number of
numbers between zero and 10. But we could quantize the range by
moving in increments of two, having zero, two, four, six, eight, and 10 only. Many things are quantized like shoe
sizes. We could get a 9, 9 and half, or
10, but itβll be very hard to get a 9.2 shoe.

Now, how do quantum numbers relate
to electrons? Electrons behave in a way that is
very complex. A lot of maths is required to model
how an electron behaves. It would take many years to discuss
all the maths that goes into quantum physics. However, there are a few simple
parts that we can break down together. Imagine a row of hotels on a street
where each hotel is unique. You can think of quantum numbers
like the door number on the street, the room number in the hotel, and so on. Of course, the number doesnβt tell
you every detail of the hotel, but you do need to understand the meaning of the
number to know where to go. Itβs the same with quantum numbers
for electrons. Each quantum number is a part of a
much more complicated equation. If we know the meaning of the
quantum number, we can use it to determine the shell, subshell, orbital, and spin of
an electron.

Letβs imagine we have an atom of
helium with two electrons in the 1s subshell. On the surface, we canβt
distinguish between the two electrons in the 1s subshell. However, on closer inspection, they
are slightly different. Electrons have a property called
spin. The spin of an electron is either
up or down. Itβs beyond the scope of this video
to explain exactly what spin is. But you can remember that a spin up
electron is represented by an upward pointing arrow and a spin down electron is
represented by a downward pointing arrow. Itβs convention to use a fishhook
arrowhead when representing electrons.

So, letβs return to our helium
atom. We can represent the orbital in the
1s subshell with a line or with a box. By convention, the first electron
in the orbital is spin up and the second one is spin down. The electrons in the 1s orbital can
now be distinguished. Theyβre in the same shell, same
subshell, and the same orbital, but one is spin up and the other is spin down. That solves the problem of
describing electrons in the same orbital. But what about electrons in
different orbitals but in the same subshell?

Here is the electron configuration
for an atom of neon, and there are six electrons in the 2p subshell. How do we go about labeling these
electrons uniquely? To start with, the 2p subshell
consists of three separate orbitals. Theyβre called the 2p π₯, 2p π¦,
and the 2p π§ orbitals. So, we can describe each electron
in a unique way. For instance, an electron in the 2p
subshell could be in the 2p π₯ orbital and be spin up.

The other pieces of information we
need are already given to us. The two in 2p indicates weβre
looking at the second electron shell, and the p tells us weβre in a p-type
subshell. Therefore, the full address of this
electron is spin-up, 2p π₯ orbital, 2p subshell, second electron shell. This is a great format for a
chemist. We talk about this type of thing a
lot, but itβs hard for a physicist or mathematician to plug these into an
equation. This is where quantum numbers come
in.

The first quantum number we need,
which is equivalent of the number of the hotel, is called the principal quantum
number and has the symbol π. The principal quantum number
describes which electron shell the electron is in. The rule for the principal quantum
numbers is they are all positive integers. Just like addresses, the lowest
principal quantum number is number one. After that, we count up using just
the integers. The second quantum number is called
the subsidiary quantum number, and it has the symbol π. Itβs also known as the as azimuthal
quantum number, the orbital angular momentum quantum number, or the subshell quantum
number. Itβs the subsidiary quantum number
that tells us which subshell an electron is in. The rule for π actually depends on
which subshell the electron is in. So, it depends on the value of
π.

For the first electron shell, where
π is one, the value of π can only be zero. For the second electron shell, π
can be either zero or one. And from the third electron shell,
we start to see a pattern. π can be zero, one, or two. If we extend this to any value of
the principal quantum number π, the values of π we can have are zero, one, two,
and so on until we reach the value π minus one.

Each value of π corresponds to a
certain type of subshell. A value of zero for the subsidiary
quantum number indicates an s-type subshell. One corresponds to a p-type
subshell, two to a d-type subshell, and three to an f-type subshell. We could go higher, but itβs not
that relevant. The letters s, p, d, and f
correspond to features of a spectrum that correspond to these subshells. The descriptions are sharp,
principal, diffuse, and fundamental. Itβs not really important to know
what s, p, d, and f mean, but it is interesting.

We can see from the general rule
that the higher the value of π, the more types of subshell theyβll be in that
electron shell. We can see from the pattern that
the number of types of subshell in an electron shell is equal to π. The first electron shell has one
type of subshell, the s shell, and the third electron shell has three types of
subshell: an s, a p, and a d. Weβll look in detail about the
nature of these subshells when we get to the magnetic quantum number.

The third quantum number is called
the magnetic quantum number, and it has the symbol π subscript π. You could call it the orbital
quantum number since it identifies the orbital our electron is in. The potential values of the
magnetic quantum number depend on the value of π, the subsidiary quantum number,
which gives us the subshell. If π is zero, then π π can be
only zero. If π is one, π π can be negative
one, zero, or positive one. If π is two, then π π can be
negative two, negative one, zero, positive one, or positive two. So, our general rule for the value
of π π, the magnetic quantum number, is that itβs equal to zero, plus or minus
one, plus or minus two all the way up to plus or minus π.

For each magnetic quantum number we
throw into our formulas, weβd get an orbital. Unlike with π, itβs harder to
connect magnetic quantum numbers to specific features of specific orbitals. But we can say for a p-type
subshell where the value of the subsidiary quantum number is one, there are three
different orbitals. For a d-type subshell, there are
five orbitals. And for a generic value of π, the
number of orbitals we get is two π plus one. The important thing is to remember
the general formula so we can apply it to any value of π.

Now weβve got down to the orbital
level, the last thing we need to account for is spin. The fourth and final quantum number
relative to electrons is called the spin quantum number, and it has the symbol π
subscript π . This quantum number identifies
whether the electron is spin up or spin down. There are only two potential values
for the spin quantum number in this context, positive half or negative half. This allows for the fact that when
we see an orbital, the maximum number electrons we can see in that orbital is
two. Thatβs four quantum numbers that
uniquely identify an electron in an atom or ion. Letβs do a quick run through of
more.

At the top, we have the principal
quantum number, the shell number. For the first electron shell,
thereβs only one value of the subsidiary quantum number allowed and thatβs zero. And for the first electron shell
and the s-type subshell, we can only have one value of the magnetic quantum number
and that value is zero. And finally, the value of the spin
quantum number can either be negative a half or positive a half. This allows for two electrons, one
spin up and one spin down, in one orbital in the single s-type subshell of the first
electron shell, which gives us two electrons in total in the first electron
shell.

Letβs move on to the second
shell. The values of π allowable for the
second shell are zero and one since weβre counting up to π minus one. Just like in the first shell, when
π equals zero, π π can only equal zero. But for π equals one, π π can
equal negative one, zero, or positive one. And, as always, π π is either
equal to positive a half or negative a half. So, the s-type subshell in the
second electron shell contains a maximum of two electrons, and the p-type subshell
contains a maximum of six electrons. Altogether, the second electron
shell can contain a maximum of eight electrons.

Letβs do one more, the third
electron shell. For π equals three, we can have π
equal to zero, one, or two. As the value of the subsidiary
quantum number π increases, the number of values we can get for the magnetic
quantum number π π increases as well. But the spin quantum number is
reliable as always. So, the s-type subshell in the
third electron shell can contain a maximum of two electrons. The p-type subshell can contain a
maximum of six electrons. And the d-type subshell can contain
a maximum of 10, giving us a grand total of 18 electrons for the maximum occupancy
of the third electron shell.

The last thing weβre going to study
is how to convert between quantum numbers and the notation we use too. This is the electron configuration
of a fluorine atom. We can imagine that the electrons
occupy the two p orbitals 2p π₯, 2p π¦, and 2p π§ according to this pattern. And weβre going to figure out the
quantum numbers that describe this electron. We could do it in any order, but
Iβm going to do it π, π, π π, π π .

We can find the value of π by
looking at the number in the subshell notation. 2p means that π is equal to
two. Weβre in the second shell. What about π? In order to work out π, we need to
convert p back to π notation. p corresponds to a value of the subsidiary quantum
number of one. Now the magnetic quantum
number. Determining the magnetic quantum
number from the orbital itself is a lot more complicated. It just so happens that the 2p π§
orbital corresponds with a magnetic quantum number of zero. And lastly, we have the spin
quantum number π π . The electron is spin up. Therefore, the spin quantum number
for that electron is positive half. Normally, you wouldnβt need to know
beyond π and π, but itβs interesting to know the others as well. So, itβs about time we had some
practice.

How many electrons in total can
have the quantum numbers π equals two and π equals one?

Quantum numbers are numbers we
assign to electrons to describe where they are, shell, subshell, and so on. π is the symbol given to the
principal quantum number. If π equals one, weβre looking at
the first electron shell. If it equals two, weβre looking at
the second. In this example, π equals two. So, weβre looking at the second
electron shell. π is the symbol used for the
subsidiary quantum number, also known as the orbital angular momentum quantum number
or the subshell number. Each value of π corresponds with a
type of subshell, like an s-type or a p-type subshell. With π equal to one, weβre dealing
with a p-type subshell.

The question is asking us, how many
electrons in total can have these particular quantum numbers? The key here is that if weβre
looking at the same atom or ion, no two electrons can have exactly the same set of
quantum numbers. So, is the answer one, since we
have quantum numbers π and π fixed at values of two and one, respectively? Well, no, there are two other
quantum numbers that can uniquely define an electron.

Thereβs another quantum number that
defines the orbital the electron is in, and thatβs known as the magnetic quantum
number. The possible values of the magnetic
quantum number are zero, plus or minus one, plus or minus two until we reach plus or
minus π, which for a value of one would give the values of π π of negative one,
zero, and one. This means we have three orbitals
in total.

The fourth quantum number we need
is the spin quantum number π π , which can either be positive a half or negative a
half. This gives us two possible spin
states. We can now calculate the number of
possible sets of quantum numbers and therefore the number of electrons we can
possibly have. There are two possible values for
the spin quantum number, three values for the magnetic quantum numbers, so thatβs
two electrons per orbital, giving us six electrons in total. You could have done this question
simply by remembering that a p-type subshell contains a maximum of six
electrons. But this way, weβve proved it.

Letβs finish off with the key
points. There are four quantum numbers that
uniquely describe electrons on the same atom or ion. The first, the principal quantum
number, has the symbol π, and it describes the shell. The principal quantum number can
take the value of any positive integer, starting with the number one. Next is the subsidiary quantum
number, also known as the orbital angular momentum quantum number, which uniquely
identifies the subshell. π can take a value of zero, one,
two up until π minus one. s subshells match up with the value of π of zero, p one,
d two, and f three.

Meanwhile, magnetic quantum numbers
of a subshell correspond roughly with the orbitals. π π can take any integer value
between negative π and positive π. And lastly, we have the spin
quantum number π π . The value of the spin quantum
number can either be positive a half or negative a half corresponding to spin up or
spin down. Together, these four quantum
numbers allow us to efficiently describe the state of an electron.