### Video Transcript

In this video weβre going to take a couple of simple functions and carry out
transformations that will stretch or squash the graphs in the same direction as the
π¦-axis. Weβll also take a look at the effect of these transformations on the
equations of the functions and come up with a general rule about stretch and squash
transformations parallel to the π¦-axis.

First then hereβs a graph of the function π of π₯ is equal to π₯ squared
. Letβs think about what would happen to that graph if we plotted π¦
equals two times π of π₯. Well weβll be doubling all of the π¦-coordinates from the graph
π¦ equals π of π₯. So two times all of the
π¦-coordinates from π of π₯. So in the original π of π₯ function if the
π¦-coordinate was zero, two times zero is zero, so
that point would stay where it was. And if the π¦-coordinate had been one, we will
double that to make it two. So this point here doubles its π¦-coordinate and ends up here. And again at this point, the π¦-coordinates are going to double
from one to two and end up here.

Now for points on the graph of π¦ equals π of π₯ that had a
π¦-coordinate of two, weβre gonna be doubling those to make them
four. So these points are gonna move up to here and this point is gonna
move up to here. And again if the π¦-coordinate in the π of π₯
function would have been full, weβll double that to make it eight. And we can join up all those points to see what our curve π¦ equals two
π of π₯ would look like at something like this.

Now itβs important to remember what weβve done. Weβve doubled the
π¦-coordinates. So instead of our π¦-coordinate going up to here,
weβve doubled that distance to bring it up to here. Instead of this π¦-coordinate
going up to here, weβve doubled it to come up to here. Now quick visual inspection of that might make it look like weβve just
squashed the curve towards the π¦-axis, but that really isnβt what happened
remember. We have doubled all of our π¦-coordinates. The transformation two times π of π₯
has moved the π¦ equals π of π₯ curve twice as far away from the
π₯-axis. Itβs been stretched times two in the
π¦-direction.

Letβs look at another function now, π of π₯. In fact π of
π₯ is equal to a function called sign of π₯. But donβt worry about that
for now. The point is itβs got positive and negative π¦-coordinates above and
below the π₯-axis. Now weβre gonna plot π¦ equals three times π of π₯, which means
weβre going to multiply all the π¦-coordinates by three. Now that means that whenever the π¦-coordinate on the original
π of π₯ curve was zero β so here, here, here, and here β then weβre
gonna multiply that by three and it will still be zero. So those points are our transformed function will stay exactly where they were
on the original function.

Now the points on the original function that had a π¦-coordinate
of one β so here and here β weβll have that multiplied by three. And
three times one is three. So they will become three. So this point
is going to move up to here and this point is going to move up to here. And every point in between will also have its π¦-coordinate
tripled. So our function is going to look- well the graph of our function is going to look
something like that. And in this section it will come down like that And tripling all the π¦-coordinates in that section will make
it look something like that. So letβs now consider when π¦ would be equal to
negative one.

Well three times negative one is equal to negative three. So
this point is gonna move down to here and this point is gonna move down to here. And again tripling all of those negative π¦-coordinates now is going to look something like that and that. So carrying out the transformation π¦ equals three times π of π₯
takes all of the π¦-coordinates and multiplies them by three. So if
they were positive, theyβre gonna get three times higher up the graph and if they were
negative, theyβre gonna get three times lower down the graph, further away from the
π₯-axis. And itβs important to remember that any points that were on the
π₯-axis are gonna stay exactly where they were before the transformation
happened. So itβs like weβve locked down the π₯-axis
and weβre stretching that curve away from the π₯-axis above and
below.

Now starting again, weβve got π¦ equals π of π₯. Now Iβve zoomed
in on the π¦-axis. So the π¦-axis and π₯-axis have got a
slightly different scale on them now. And if we want to plot π¦ equals a half times π of π₯, weβre gonna
be multiplying all of the π¦-coordinates by a half. Now any points that on the π of π₯ β well on the
π₯-axis β that had a π¦-coordinate of zero when we
multiply that by a half is still gonna be zero. So these points
are going to be transformed to themselves. Again weβre locking down the π₯-axis.
Any points that are on the π₯-axis are gonna stay there. And if our π¦-coordinate was one β so here and here on
the π of π₯ function β when we multiply that by a half
those π¦-coordinates are gonna be only a half; theyβre gonna be
squashed towards the π₯-axis. And this same effect is going to happen to all of the points on the curve in
between those points that we just looked at. So halving all the π¦-coordinates in that section will give us a
curve that looks like this. And halving all of those π¦-coordinates in that section from
π of π₯
will give us a curve that looks like this: π¦ equals a half π of
π₯.

And again letβs consider the points in π¦ equals π of π₯, which
had a π¦-coordinate of negative one. Weβre gonna halve that to be
negative a half. So this point is going to move up to here and this point is
going to move up to here. And now if we halve all of the π¦-coordinates in this section of
the graph, that part of the π¦ equals a half π of π₯ curve is going to look
like that. And that part of the π¦ equals a half π of π₯ curve is going to
look like that. So weβve locked off the π₯-axis again. All points on the
π₯-axis stay where they are. But this time weβre squashing our curve towards the
π₯-axis. Weβre multiplying all of our π¦-coordinates by a
half.

So weβve been looking at transforming a function by multiplying it by a
constant. For example, mapping π¦ equals π of π₯ onto π¦ equals π times π of
π₯. And as weβve seen that ends up with just multiplying all of the
π¦-coordinates by the constant π. And we saw that when π is greater than one, then the function
gets stretched away from the π₯-axis. And when π is between zero and one,
then π of π₯ gets squashed towards the π₯-axis. So what do you think would happen if π was equal to
one? Well then we will be multiplying all of the π¦-coordinates by
one. So π of π₯ would stay exactly where it is.

Okay then what about if π was negative? Well letβs try one with
π is equal to negative one. Here we got a function π¦ equals π of π₯. So now letβs define a function π of π₯ which is equal to
negative one times π of π₯. So our π value in the
previous slide would have been negative one. So now letβs plot π¦ equals π of π₯. Well in the π of π₯ function if our π¦-coordinate was
zero if we multiply that by negative one, negative one times
zero is still zero, so this point here maps onto itself. And when on the π of π₯ function our π¦-coordinate
was one, so here and here, thatβs gonna be multiplied by negative
one. So thatβs gonna become negative one. And when the π¦-coordinate would have been two in
our π of π₯ functions, those π¦-coordinates get multiplied by negative one
to make negative two. So those points are going to map down here, and the same for three, and four, and so on. So our π¦ equals π of π₯ curve is gonna look like this. So this is reflection: in the π₯-axis the
π¦-coordinates of the same distance from the π₯-axis but that on the
other side. So when our π transformation here, our π value is
negative one, we get a reflection in the π₯-axis.

Well now letβs think about when π is less than negative
one. So for example, when π is negative two. Letβs plot
π¦ equals π times π of π₯ when π is negative two.
Hereβs our π of π₯ curve. Now when we multiply all of our π¦-coordinates by negative
two, weβre getting that reflection in the π₯-axis. But all of the
distances away from the π₯-axis are doubling. So weβre getting a reflection and a stretch. So look that distance here is
doubled to that distance there. It moves to the other side of the π₯-axis and
doubles. But again any points that were on the π₯-axis, it doesnβt matter what
youβve multiplied it by, if you started off a zero, you multiplied it by a
number, is still going to stay a zero. So the points that started on the
π₯-axis stay on the π₯-axis. So this transformation of multiplying the π of π₯ functions by
negative two is creating a reflection in the π₯-axis followed by a
stretch times two parallel to the π¦-axis.

So finally letβs think about when negative one is less than π is less
than zero. So π is between zero and negative
one. So specifically letβs try when π is equal to negative half. So
weβve got to plot π¦ equals π times π of π₯, where π is negative half. So weβre plotting π¦ equals negative a half times π of π₯. Now
weβre given the graph of the π of π₯ functions there. So weβre just gonna go
through and work out what happens to all our π¦-coordinates. Again if your π¦-coordinates started off as being
zero, itβs gonna be multiplied by negative a half, still going to
be zero. So thatβs going to stay where it is. And now multiplying all of our π¦-coordinates by negative a
half, theyβre going to the opposite side of the π₯-axis. But theyβre
being halved; the distance away from the π₯-axis is half of what it was for the
π of π₯ function.

So the curve is being squashed towards the π₯-axis
and any points that were on the π₯-axis stay there. But weβve also got this reflection in the π₯-axis going on. So thatβs reflected in the π₯-axis and then squashed times
a half parallel to the π¦-axis towards the π₯-axis.

So letβs summarise everything weβve learnt then. So if weβve got a function
called π of π₯ and we multiply that by π, weβve transformed that
function. So if we say π of π₯ is the transformed function of π of π₯, then if π is bigger than one, remember thatβs gonna
stretch the π of π₯ function times π parallel to the
π¦-axis. Points that were on the π₯-axis stay where they are, but
everything else gets stretch further away from it. Then if π was equal to one, we would be doing a
stretch times one. We will be multiplying all the π¦-coordinates by
one. So basically the function is just transformed onto itself. It look exactly
the same.

And if zero is less than π is less than one, so π
is between zero and one, then this is going to have the effect of
squashing the curve of that function towards the π₯-axis. Weβre multiplying all
the π¦-coordinates by π. And because π is between
zero and one, the magnitude of all those
π¦-coordinates is gonna get smaller. Each of them if theyβre positive, theyβre
gonna become smaller and get closer to zero. If theyβre negative, theyβre gonna
be halved and theyβre going to get closer to zero.

And the most extreme example of that I suppose is when we put π equals
to zero. So all of the π¦-coordinates are multiplied by
zero. They all become zero. That function is squashed so much. Its
squash is transformed completely onto the π₯-axis.

Then if π is between zero and negative
one, we get- because itβs negative weβre getting this reflection in the
π₯-axis of the function. And then we squash it towards the π₯-axis.
So all of the π¦-coordinates multiplied by π, by a fractional amount,
is moving closer to the π₯-axis.

If π was equal to negative one, thatβs just a straight
reflection of the function in the π₯-axis. All the π¦-coordinates are
going to stay the same distance away from the π₯-axis; theyβre just gonna be the
other side of it.

And then finally if π is less than negative one, weβve got a
reflection in the π₯-axis because that π value was negative. But then
because weβre multiplying all the coordinates by a number which is less than negative
one, weβre stretching that curve away from the π₯-axis.

Okay just before we go. Here is a question for you to try. Given the graph
π¦ equals π of π₯ below. Sketch the curve π¦ equals π of π₯, where
π of π₯ is equal to two times π of π₯. So Iβd like you to pause the video. Have a go at this question and then come
back. And Iβll show you how to do it. So letβs just have a look at this curve then. So weβve got an uppie-downie
curve around the π₯-axis here. When I put various values into this function, I get
these π¦-coordinate values out. So the value of the function weβre using is the
π¦-coordinate in each of these.

Now weβre gonna put the same π₯-values into the π
function as we did into the π function. But for the π function,
weβre gonna take double the π values. So now Weβre going to take twice the value
of the π¦-coordinates in each case. Now these points here on the curve, the π¦-coordinate was equal
to zero and if I double zero, I still get zero. So those points on the π function
are gonna map to still the same points on the π function. So I can sketch those
in now. And the points on the π of π₯ function which have a
π¦-coordinate of one, theyβre gonna have that
π¦-coordinate doubled to map onto the π of the π₯ function. So this point here is gonna map up to here, this point here is gonna be
doubled up to two up here, and this point here is gonna be doubled to make
two up here. And likewise for the points that have a π¦-coordinate of
negative one in our π of π₯ function to turn it into our π of
π₯ function β to transform into the π of π₯ function β weβre gonna be doubling
those π¦-coordinates
two times π of π₯. So weβre gonna be doubling negative one to make
negative two. And that means that this point here is gonna be doubled to come down here;
itβs gonna have its π¦-coordinate doubled. This point here is gonna have same
π₯- input, but itβs going to have its π¦-coordinate doubled down
here. Weβve just drawn that slightly in the wrong place. Thatβs going to come down to here. So
what weβre going to do now is join up those dots to make our curve.

And for all of these points in between the points that we made here, theyβre
going to have their π¦-coordinates doubled as well. So weβre gonna get a curve
thatβs coming down, getting closer to zero, still going to end up at
zero. Likewise in this section here weβll be doubling all of those
π¦-coordinates. In this section here doubling all of the
π¦-coordinates, itβs gonna look not quite as sharp as that. But itβs going to
look something like that. In this section here weβre gonna get a curve that comes up; it goes
like that. This section here is gonna come down like that and this section here the
π¦-coordinates are going to come down here. And this section here is gonna
look something like this and this section here is gonna look something like this.

Now I am so happy and Iβve checked my sketch there. Then Iβve just filled it
in to make it stand out nice and clearly on the graph. And in some questions they might ask you to describe that transformation. So
something like a stretch times two parallel to the π¦-axis away from
the π₯-axis would be a description of that transformation. And itβs also worth remembering that anything that was on the
π₯-axis because it had a π¦-coordinate of zero it
doesnβt matter what you multiply that by itβs always gonna to stay where it is at
zero. So those points on the π₯-axis are going to stay there then,
anchored to the π₯-axis.