Video: Understanding Antiparticles

The antiparticle of a particle has the same _ as that particle but has an opposite _.

01:25

Video Transcript

The antiparticle of a particle has the same blank as that particle but has an opposite blank.

Okay, so, this question is testing our understanding of what an antiparticle is. So, to answer it, let’s look at an example of an antiparticle. Let’s recall that the antiparticle of an electron is known as a positron. And let’s also recall that the mass of an electron, which is 9.1 times 10 to the power of negative 31 kilograms, is the same as the mass of a positron. And so, if the electron is our particle and the positron is our antiparticle, we see that they have the same mass. Hence, mass can be filled in into our first blank.

Now let’s recall a second property of electrons and positrons. Let’s recall that the charge on an electron, which we’ll call 𝑞 subscript e⁻, is negative 1.6 times 10 to the power of negative 19 coulombs because, remember, the electron is a negatively charged particle. However, the charge on a positron, 𝑞 subscript e⁺, is positive 1.6 times 10 to the power of negative 19 coulombs.

Therefore, both the electron and the positron have the same magnitude of charge. But the positron is positively charged, whereas the electron is negative. And hence, we can say that these two particles, the electron and the positron, have opposite electric charges. And we can fill electric charge into our second blank.

And now we’ve used this specific case of electrons and positrons to fill in the blanks in the statement. But actually, this applies to all particles and antiparticles. We can say that the antiparticle of a particle has the same mass as that particle but has an opposite electric charge.

Nagwa uses cookies to ensure you get the best experience on our website. Learn more about our Privacy Policy.