Question Video: Angular Momentum | Nagwa Question Video: Angular Momentum | Nagwa

Question Video: Angular Momentum

Three particles move independently of each other, and each particle is subject to a force perpendicular to the direction of its instantaneous velocity. What is the total angular momentum about the origin of the particles? What is the rate of change of the total angular momentum about the origin of the particles?

06:57

Video Transcript

Three particles move independently of each other, and each particle is subject to a force perpendicular to the direction of its instantaneous velocity. What is the total angular momentum about the origin of the particles? What is the rate of change of the total angular momentum about the origin of the particles?

We can call the total angular momentum of the particles capital 𝐿 and the rate of change of that total Δ𝐿 over Δ𝑡. To start off solving for 𝐿, the total angular momentum of our three particles 𝑚 one, 𝑚 two, and 𝑚 three about the origin, we can recall the mathematical definition for angular momentum. 𝐿 as a vector is equal to its position vector crossed with its momentum. And knowing that 𝑝 momentum is equal to mass times velocity, we can also write this as 𝑚 times the quantity 𝑟 cross 𝑣.

In our situation, we have three masses at different locations, and, therefore, each one has its own different position vector. We can write out what those position vectors are by observing our mass positions relative to the origin. We see that 𝑚 one is at a position of negative two meters on the 𝑥-axis and positive one meter on the 𝑦. So, we write its position vector as negative two 𝑖 plus 𝑗 meters.

The position of mass 𝑚 two relative to the origin is plus four meters in the 𝑥-direction and plus one meter in the 𝑦. So, it’s position vector is four 𝑖 plus 𝑗 meters. And 𝑚 three is at a position of positive two meters in the 𝑥-direction and negative two meters in the 𝑦-direction relative to the origin. So, we can write its position vector, 𝑟 three, as two 𝑖 minus two 𝑗 meters.

Since we’re given the velocities and masses of each one of our three masses, we now have all the information we need to calculate the angular momentum of each one. Since angular momentum 𝐿 is a vector and we’ll take a cross product to compute that vector, let’s remind ourselves of the rule for crossing two different vectors, we’ll call them generically 𝐴 and 𝐵, and assume they’re three-dimensional.

Given two three-dimensional vectors 𝐴 and 𝐵, their cross product is equal to the determinant of the three-by-three matrix where the first row of the matrix is the unit vectors 𝑖, 𝑗, and 𝑘 of our three-dimensional space. The last two rows are the 𝑖, 𝑗 and 𝑘 components of these two vectors 𝐴 and 𝐵 respectively. We’ll use this rule to calculate the angular momentum of mass one, we’ll call it 𝐿 one, and also the same for mass two, we’ll call it 𝐿 two, and the same thing for mass three. Then, we’ll add together those three angular momenta to solve for 𝐿, the total.

Starting with 𝐿 one, that’s equal to 𝑚 one times 𝑟 one cross 𝑣 one. We know 𝑚 one, the mass, and 𝑣 one, the velocity, from our diagram. And we’ve solved for 𝑟 one, the position vector of that mass relative to the origin. Plugging in for our value 𝑚 one and following our cross-product rule for setting up the relationship between 𝑟 one and 𝑣 one, we know that because 𝑟 one and 𝑣 one only have 𝑥- and 𝑦-components, that means the direction of their cross product will only have a 𝑧-component. Therefore, 𝐿 one will only have a 𝑘-hat direction.

This means that when we evaluate this matrix, we only need to evaluate the 𝑘th component because the 𝑖- and 𝑗-components will be zero. When we make that evaluation, we take negative two meters and multiply it by 4.0 meters per second and subtract from that one meters times zero, which is zero. Overall then, 𝐿 one is 2.0 kilograms times negative 8.0 meters squared per second in the 𝑘-direction, or negative 16 kilograms meter squared per second in the 𝑘-direction.

Next, we move to calculating 𝐿 two, the same value but for 𝑚 two, 𝑟 two, and 𝑣 two. Again calculating only the 𝑘-component because that’s the only nonzero component to 𝐿 two, we find it’s equal to 4.0 kilograms times negative 5.0 meters squared per second in the 𝑘-direction, or negative 20 kilograms meter squared per second 𝑘. Then, we do the same thing for 𝐿 three with 𝑚 three, 𝑟 three, and 𝑣 three. This vector comes out to 6.0 kilograms meter squared per second again in the 𝑘-direction.

Now that we’ve solved for 𝐿 three, 𝐿 two, and 𝐿 one, we’re able to add all these three together and solve for the overall angular momentum 𝐿. This is equal to negative 16 minus 20 plus 6.0 kilograms meter squared per second in the 𝑘-direction, or negative 30 kilograms meter squared per second in the 𝑘-direction. That’s the total angular momentum of this system of masses about the origin.

Next, we wanna solve for the time rate of change of that total angular momentum. We recall from the rotational version of the impulse-momentum theorem that the change in angular momentum 𝐿 is equal to the total average torque 𝜏 multiplied by Δ𝑡. This tells us that Δ𝐿 over Δ𝑡 is equal to the total torque 𝜏. Each one of the three masses experiences a torque. So, to solve for the overall torque 𝜏, we’ll need to solve for the individual torques and sum them.

Since torque is equal to 𝑟 cross 𝐹, and we’ve already solved for the position vectors of our three masses and are given their forces, we can use the same cross product rule to solve for the overall torque. Just like with our angular momentum, since all of our position vectors and all of the forces acting on our particles have only 𝑥- and 𝑦-components, that means all of our torques 𝜏 one, 𝜏 two, and 𝜏 three will only have 𝑘-components. And that means we only need to evaluate the 𝑘-component of our three-by-three matrix.

In the case of 𝜏 one, plugging in for 𝑟 one and 𝐹 one by component, this is equal to 6.0 newton meters in the 𝑘-direction. Moving onto 𝜏 two, the torque on particle two, this is equal to the cross product of 𝑟 two and 𝐹 two, or 40 newton meters in the 𝑘-direction. And lastly, we calculate 𝜏 three, plugging in for 𝑟 three and 𝐹 three in our matrix. This gives us a result of negative 16 newton meters in the 𝑘-direction.

With values now for 𝜏 three, 𝜏 two, and 𝜏 one, we can add these together to solve for the overall torque 𝜏. This is equal to 6.0 plus 40 minus 16 newton meters in the 𝑘-hat direction, or 30 newton meters in the 𝑘-direction. And since this is the overall torque acting on our system of masses, by the impulse-momentum theorem, it’s also equal to the time rate of change of angular momentum.

Join Nagwa Classes

Attend live sessions on Nagwa Classes to boost your learning with guidance and advice from an expert teacher!

  • Interactive Sessions
  • Chat & Messaging
  • Realistic Exam Questions

Nagwa uses cookies to ensure you get the best experience on our website. Learn more about our Privacy Policy