Question Video: Describing the Conservation of Energy in a Chemical Reaction | Nagwa Question Video: Describing the Conservation of Energy in a Chemical Reaction | Nagwa

Question Video: Describing the Conservation of Energy in a Chemical Reaction Chemistry • First Year of Secondary School

Which of these statements does not describe the conservation of energy in a chemical reaction? [A] Energy is neither created nor destroyed during a chemical reaction. [B] If the energy of a system increases, then the energy of the surroundings decreases by the exact same amount. [C] Energy can only be transferred from one form to another. [D] If the energy of a system decreases, then the energy of the surroundings increases by the exact same amount. [E] The energy contained in the bonds of reactant molecules always equals the energy contained in the bonds of product molecules.

02:52

Video Transcript

Which of these statements does not describe the conservation of energy in a chemical reaction? (A) Energy is neither created nor destroyed during a chemical reaction. (B) If the energy of a system increases, then the energy of the surroundings decreases by the exact same amount. (C) Energy can only be transferred from one form to another. (D) If the energy of a system decreases, then the energy of the surroundings increases by the exact same amount. Or (E) the energy contained in the bonds of reactant molecules always equals the energy contained in the bonds of product molecules.

The question’s asking us to identify the one statement out of the five that does not describe the conservation of energy in a chemical reaction. The law of conservation of energy can be stated in the form that energy cannot be created or destroyed. But energy can be converted between its various forms, like thermal energy, sound, light, and chemical potential energy.

The first statement says that energy is neither created nor destroyed during a chemical reaction. This is perfectly true. And in fact, it doesn’t even need to apply to chemical reactions. It’s a universal law. So since this does describe the conservation of energy in a chemical reaction, it’s not a correct answer.

The second statement says that if the energy of a system increases, then the energy of the surroundings decreases by the exact same amount. What this statement is suggesting is if the system energy goes up, then it must be drawing energy from the surroundings. So the energy of the surroundings must go down. This is an application of the law of conservation of energy. The total energy must be constant. So this statement is true. The only things in the entire universe are the system and the surroundings. And the total energy of the universe must be constant. We can substitute the term energy and enthalpy when it pertains to the system, and it’s still true.

The third statement says that energy can only be transferred from one form to another, for instance, the conversion of electrical energy into heat and light in a tungsten bulb. This squares with our conservation law perfectly. Energy can only be transferred or converted from one form to another.

Statement (D) says that if the energy of a system decreases, then the energy of the surroundings increases by the exact same amount. This is just statement (B) the other way around. And we can see that it’s perfectly true, which leaves us with (E) the energy contained in the bonds of reactant molecules always equals the energy contained in the bonds of product molecules. We know this is false because we often see chemical bond energy changing throughout a reaction. In our example, when we form calcium oxide and carbon dioxide from calcium carbonate, the products have weaker bonds than the reactants.

Join Nagwa Classes

Attend live sessions on Nagwa Classes to boost your learning with guidance and advice from an expert teacher!

  • Interactive Sessions
  • Chat & Messaging
  • Realistic Exam Questions

Nagwa uses cookies to ensure you get the best experience on our website. Learn more about our Privacy Policy