Question Video: Finding the Force That an Asteroid Exerts on Earth When It Is at the Minimum Distance from Earth | Nagwa Question Video: Finding the Force That an Asteroid Exerts on Earth When It Is at the Minimum Distance from Earth | Nagwa

Question Video: Finding the Force That an Asteroid Exerts on Earth When It Is at the Minimum Distance from Earth Mathematics • Second Year of Secondary School

An asteroid has a mass of 4.7 × 10¹³ kg. The asteroid passes near Earth, and at its closest approach, the separation of the centers of mass of the asteroid and Earth is four times the average orbital radius of the Moon. What force does the asteroid exert on Earth when at its minimum distance from Earth? Use a value of 384400 km for the average orbital radius of the Moon.

02:57

Video Transcript

An asteroid has a mass of 4.7 times 10 to the 13th kilograms. The asteroid passes near Earth, and at its closest approach, the separation of the centers of mass of the asteroid and Earth is four times the average orbital radius of the Moon. What force does the asteroid exert on Earth when at its minimum distance from Earth? Use a value of 384400 kilometers for the average orbital radius of the Moon.

We’ll label this force, we want to solve for, capital 𝐹 and start off by drawing a sketch of the situation. In this situation, our asteroid labelled 𝑎 passes by the Earth labelled 𝐸 at a minimum distance of four times the orbital radius of the moon around the Earth. Given the mass of the asteroid 𝑚 sub 𝑎 and the orbital radius of the moon around the Earth 𝑂𝑅 sub 𝑚, we want to solve for the gravitational force of attraction between the asteroid and Earth when they’re closest. To solve for this force, we recall that the gravitational force of attraction between any two masses, 𝑚 one and 𝑚 two, is equal to their product divided by the square of the distance between their centers of mass all multiplied by the universal gravitational constant capital 𝐺.

We’ll let that constant 𝐺 be exactly 6.67 times 10 to the negative 11th cubic meters per kilogram second squared. When we apply the mathematical relationship for gravitational force to our scenario, we can say that 𝐹, the force we wanna solve for, is equal to 𝐺 times the mass of the Earth times the mass of the asteroid all divided by four times the orbital radius of the Moon quantity squared. We know the value in the denominator given to us. And we also know the mass of the asteroid, as well as the constant 𝐺. All that remains is to solve for the mass of the Earth. And we can do that by looking up this value.

A commonly accepted value for the mass of the Earth is 5.95 times 10 to the 24th kilograms. Knowing that, we’re ready to plug in and solve for 𝐹. When we do plug these values in, we’re careful to convert the orbital radius of the Moon into units of meters so that it’s consistent with the units in the rest of our expression. Speaking of units, let’s take a second to consider what the final units of this calculation will be. Looking in the numerator of this overall expression, we see that a factor of kilograms will cancel out. Looking then at the units of meters that appear in our expression, we see that the meter squared in the denominator will take away two meter factors in our numerator so that overall we’ll simply have meters to the first.

The units of second squared will remain in our overall denominator. So we expect to get final units of kilograms meters per second squared, which agrees with the units we’d expect for a force, that is, units of newtons. When we calculate this result, we find, to two significant figures, that it’s 7.9 times 10 to the ninth newtons. That’s the gravitational force of attraction between the asteroid and the Earth.

Join Nagwa Classes

Attend live sessions on Nagwa Classes to boost your learning with guidance and advice from an expert teacher!

  • Interactive Sessions
  • Chat & Messaging
  • Realistic Exam Questions

Nagwa uses cookies to ensure you get the best experience on our website. Learn more about our Privacy Policy