### Video Transcript

In this video, we are going to look at how to calculate the surface area of a
cylinder and then apply this method to a couple of questions. So letโs think about calculating the surface area of a cylinder. Now you would
have seen before that in order to calculate the surface area of a prism, you need to find the
total area of all of its faces. So what we need to think about are what are the different faces
that the cylinder has. Now one way to do that is to sketch the net of this cylinder. So what it would look
like in two dimensions if we were able to unwrap it.

So first of all, the cylinder has two circular faces. It has the faces that are on
the top and the base of the cylinder, the ones that Iโm shading in here. So when we draw the net of this cylinder, we need to include these two circular
faces. Now Iโve labelled my diagram. It has the measurements โ and ๐ on it; โ is standing for
the height of the cylinder and ๐ is standing for the radius of the circle.

So there are those two circular faces. Now a cylinder also has a curved surface,
which is this one that Iโm currently shading in in orange here. And think about what the shape
of that would be. Even though itโs a curved surface, if you were to unfold it so that it was a
flat surface, you would see that itโs actually a rectangle. And you could try this yourself. If
you find a food can or something like that and unpeel the label, you will see that the shape of
that label is in fact a rectangle. So if I add it to my net, Iโll see that the net of the cylinder looks something
like this: a rectangular part and then these two circular parts. So now I need to work out what the area of each of these parts are. Well the
circle, remember the area of a circle the formula for that is ๐๐ squared, so
each of those circles will be contributing that amount to the area.

So therefore, I will have a total contribution of two ๐๐ squared from the
circular top and the circular base. Now letโs think about calculating the area of this rectangle. So if a rectangle, we do
the length multiplied by the width while this measurement here, thatโs just the height of the
cylinder. So thatโs โ. And then I need to think about what is the width of the rectangle this
measurement here.
Well if you think about this carefully or perhaps if you think back to your food
can and unwrapping the label, youโll see that this measurement here matches up perfectly with
the circumference of the circle on the top and on the base. And if you are cool, then the formula for calculating the circumference of a circle is
either ๐๐ where ๐ represents the diameter or two ๐๐ where ๐ represents the radius. And as
itโs the radius that Iโve used in other parts of this calculation, itโs the radius that I
will again use here.

So the dimensions of the rectangle then are โ and two ๐๐, which means the area of this
rectangle when I multiply them together will be two ๐๐โ.
So now I have all that I need in order to write down the formula for calculating
the total surface area of the cylinder. Itโs just gonna be the sum of these three
areas.

So here is that formula. The total surface area of the cylinder is equal
to two ๐๐ squared plus two ๐๐โ. Now when youโre working with cylinders, sometimes you arenโt asked to calculate the
total surface area. Youโre asked instead to calculate something called the lateral surface area. And what this refers to is the curved part of the surface area. So in our net of
a cylinder, itโs this rectangular part here. So if youโre just asked to calculate the lateral surface area, then youโll be using
this formula instead, which is that itโs equal to two ๐๐โ as itโs only the area of
that rectangle that weโre interested in.

So letโs look at a prim question. The question asked us to calculate the lateral
surface area of the cylinder below. And we can see this cylinder has a height of thirteen centimetres
and a diameter of ten centimetres. So first of all, note the question has asked for the lateral surface area. So
weโre only interested in that curved part, not the full surface area including the top and the
base. So remember the formula that we need here is that the lateral surface area is equal to
two ๐๐โ. So in this question, โ, well thatโs thirteen centimetres, and ๐ remember presents
the radius. We havenโt got the radius. Weโve got the diameter which is ten. So the radius is
half of that which is five.
So our calculation then is the lateral surface area is two times ๐ times five times
thirteen.

Now actually remember that that two ๐๐ in the formula for the lateral
surface area is representing the circumference of the circle. And another way to write that
would have been ๐๐. So rather than dividing this value of ten by two to get the radius and including the
factor of two in the formula, we could actually have just done ๐๐โ and then ๐ times ten times
thirteen. So rather than dividing by two and multiplying by two, we could have got about in a
slightly simpler way.

At any way, it gives us the same result in our calculation. So two times ๐
times five times thirteen, this gives me a hundred and thirty ๐ as the lateral surface area. I could leave my
answer in terms of ๐, if thatโs how it was requested or if I didnโt have a calculator. But if
I go on and evaluate my answer as a decimal,
then it gives me an answer of four hundred and eight point four
centimetres squared. And thatโs been rounded to one decimal place or the nearest
tenth. Units, remember, weโre talking about area. So I need to square units with my answer,
which is why the centimetres squared in this instance.

Right, letโs look at our next question on this. This time we are asked to
calculate the total surface area of the cylinder below, so I need to recall the formula for
calculating the total surface area. Remember, that is going to include the top and the
base this time. So here is the formula we need. The total surface area is equal to two ๐๐
squared plus two ๐๐โ. So itโs just a question of substituting the correct values into this
formula. The radius is six millimetres and the height is twenty-five millimetres.

So the calculation will be two times ๐ times six squared plus two times
๐ times six times twenty-five. The brackets, I donโt actually need them. Theyโre not
mathematically necessary. Iโve just put them in so that you can see the two parts of the
calculation more clearly. So if I evaluate these, then I have seventy-two ๐ plus three hundred ๐.
So that gives me an overall total of three hundred and seventy-two ๐ for the total
surface area. Again, I could leave my answer at this stage, but Iโll evaluate it as a
decimal.
And doing that gives me an answer of one thousand one hundred and sixty-eight point
seven millimetre squared. And again, that answer has been rounded to one decimal place.

So a couple of things to watch out for then, have you been asked for the total
surface area or the lateral surface area? So do you need to include the top and the base or not.
And also have you been given the radius or have you been given the diameter of the cylinder.
And if youโve been given the diameter, you just need to think carefully about how youโre going to
use it in the formula.

Okay this is the final question that weโre going to look at in this video. It says
the total surface area of a cylinder of radius two meters is twenty-eight ๐ meters squared.
Calculate the height of the cylinder. So this question is an example of one when we need to work backwards. Weโre given the
surface area and we have to work out one of the missing dimensions of the cylinder. So first of all, we need to recall the relevant formula. And reading the question
carefully, it says the total surface area. So we need the formula for total rather than lateral. So itโs this formula here, total surface area is equal to two ๐๐ squared
plus two ๐๐โ.
So we can use this formula to form an equation involving the radius and the
total surface area that we do know and the height that we donโt. Once weโve got the equation, weโll
will be able to solve it in order to work out what this height is.

So letโs form this equation. Iโm gonna substitute ๐ was equal to two into this formula.
So two ๐๐ squared is gonna be two times ๐ times two squared. And then two ๐๐โ is
gonna be two times ๐ times two times this value โ that we donโt know. And weโre told that is
all equal to twenty-eight ๐.
So Iโve set up the start of my equation. Now I can simplify it a bit. So looking at the
first term, thatโs gonna simplify. Well two squared is four and then multiplied by two is
eight.
So I have eight ๐ for that first term. And then the second term, two times two is four, so
Iโm gonna have four ๐โ for that second term.
So that brings me to this stage here. Eight ๐ plus four ๐โ is equal to
twenty-eight ๐. Now all of those terms have a factor of ๐ in, so actually I can divide
through by ๐ or cancel out that factor to simplify this equation a little bit.
If I just write it out again then so we can see a little bit more clearly, so I can see that my equation is actually just four โ plus eight is equal to twenty-eight.

Solving this equation, it is relatively straightforward. The first step is I need to
subtract eight from both sides of the equation.
And so that gives me four โ is equal to twenty and then I need to divide both sides of
the equation by four.
And so that gives me the โ is equal to five. โ, remember, represents the height so it
needs a unit. And if you look back at the question, all of the units were meters and meters
squared, so this must be five meters for the height of the cylinder.

So this question involved using the information that we were given to set up and
then solve an equation in order to work out a missing dimension of the cylinder. To answer a similar question where it was the radius that was missing would be a
more complex problem, as it would result in a quadratic equation to solve. But that is a
possible extension of this. So to summarise then, weโve looked at how to calculate the lateral and the total
surface area of a cylinder. Weโve seen where that formula comes from in terms of the net of the
cylinder. Weโve applied it to a couple of more straightforward questions where we just have to
substitute the relevant values. And then finally, weโve looked at a question that involves
working backwards from a known surface area to calculate the height of the cylinder.