Question Video: Using Kirchoff’s Laws to Calculate the Potential Drop across a Resistor in a Circuit | Nagwa Question Video: Using Kirchoff’s Laws to Calculate the Potential Drop across a Resistor in a Circuit | Nagwa

Question Video: Using Kirchoff’s Laws to Calculate the Potential Drop across a Resistor in a Circuit Physics

The resistor in the circuit shown is powered by two batteries in parallel that have terminal voltages of 2.5 V each. What is the potential drop across the resistor?

03:00

Video Transcript

The resistor in the circuit shown is powered by two batteries in parallel that have terminal voltages of 2.5 volts each. What is the potential drop across the resistor?

So here in this circuit, we have these two batteries, here’s one and here’s the other, and they’re arranged in parallel. And they supply voltage to this resistor here so that there’s a potential drop of 𝑉 volts across the resistor. Our task is to solve for this value. And to do this, we can recall Kirchhoff’s voltage law. In words, this law says that the sum of emfs of voltage sources across a current loop equals the sum of potential drops.

So this is saying that anytime we have a voltage source such as these two batteries in our circuit, then if we consider those sources in the context of a given current loop, the emfs supplied by the sources are equal to the sum of potential drops experienced throughout the rest of the loop due to circuit components such as resistors. Especially in our situation, considering only those voltage sources and circuit components that are part of the same current loop is very important.

If we forget this part about the current loop, we might look at this circuit and say we have 2.5 volts here and 2.5 volts here. And both batteries seem oriented in the same direction, so we expect these voltages to combine. And so we might say then that 𝑉 is equal to the sum of these two voltages, 5.0 volts.

But if we constrain ourselves to thinking in terms of current loops, as the voltage law tells us, then we’ll come up with a different response. In this circuit, there are two separate loops that contain both a battery as well as this resistor. Here’s one of those loops that includes the lower of the two batteries. And then, here’s the second loop. As we analyze this circuit, we’ll consider what’s going on in these two different loops separately.

So first, let’s consider the interior loop. We’ll call this loop one. Following Kirchhoff’s voltage law, this says that the sum of emfs of voltage sources, which for this particular loop we can see is 2.5 volts, is equal — Kirchhoff’s voltage law says — to the sum of potential drops across this loop. As we look at loop one, we see that there’s only one circuit component where voltage drop can occur. It’s over this resistor here. And we’re told that that voltage drop is some amount we can call capital 𝑉.

So then applying Kirchhoff’s voltage law to this first loop, we get 2.5 volts is equal to 𝑉. There are no other components in this current loop. So our answer is simply that 𝑉, the potential drop across the resistor, is 2.5 volts. But now, what if we consider the other loop, we can call that loop two, instead. If we did that and applied Kirchhoff’s voltage law, once again our sum of emfs of voltage sources around this loop would be 2.5 volts.

And also just like before, the only component where this potential can drop is the resistor. And therefore, that potential drop, capital 𝑉, must be equal to 2.5 volts. So no matter which of the two loops we consider, we end up with the same answer that the potential drop across the resistor is 2.5 volts.

Join Nagwa Classes

Attend live sessions on Nagwa Classes to boost your learning with guidance and advice from an expert teacher!

  • Interactive Sessions
  • Chat & Messaging
  • Realistic Exam Questions

Nagwa uses cookies to ensure you get the best experience on our website. Learn more about our Privacy Policy