### Video Transcript

What are properties of addition and multiplication? Properties are statements that are true for all numbers. First up, commutative properties. Weβll start with the commutative property of addition. The commutative property of addition states that the order in which two numbers
are added does not change their sum. A variable representation of that is π plus π is the same thing as
saying π plus π.
Or four plus three is the same thing as three plus four.
The order doesnβt matter here.

The commutative property can also be applied to multiplication. Look at the changes that happened on the screen. Commutative property of multiplication states that the order in which two
numbers are multiplied does not change their product. In this case, π times π equals π times π.
An example of that is five times four equals four times five.

One way to remember the commutative property is to think about the word commute. The word commute and the word commutative relates to exchange, substitution, and interchange. Here with the commutative property, weβre specifically talking about when we
change the order in which we add or multiply. And in this case, it does not change the value depending on the order.

Next up, the associative property. And again weβll start with addition. The associative property of addition states the way three numbers are grouped
when they are added does not change their sum. Hereβs what that looks like with variables: π plus π plus π equals π plus π
plus π.
What that means is if we add π and π together first and then add π, that sum is the same as if we added π and π together first and then added π. In this case, one plus two plus three equals one plus two plus three.
One plus five equals three plus three.

This property can also be applied to multiplication. Notice the changes here. The associative property of multiplication says the way three numbers are
grouped when they are multiplied does not change their product. If we multiply π and π first and then take that value and multiply it by π, we will have the same product as if weβve multiplied π and π and then that value by
π. We can remember the associative property with the word associate. Association deals with groupings. The way that three numbers are grouped when theyβre added or multiplied does not
change their sum or their product.

And third on our list, identity properties. Starting with the identity property of addition, this property states that the sum of an addend and zero is the addend: π plus zero equals π.
Seven plus zero is seven.
As we switch over to the identity property of multiplication, letβs look
carefully at all the changes. The identity property of multiplication says the product of a factor and one is
that factor. Our example, π times one equals π.
Notice that the identity property of multiplication is multiplying the factor by
one.

Letβs look at these properties side by side. When we add zero to any value, weβre gonna get the same value back. And when we multiply by one, the same thing happens. You can remember the identity property by thinking about looking in the mirror. π looks the same after you add zero. π also looks the same after you multiply it
by one.

Our last property is a little bit different. The distributive property shows us how we combine addition and multiplication. The distributive property says this: To multiply a sum by a number, multiply each
addend of the sum by the number outside the parentheses. Thatβs a lot of words. Letβs see what that looks like.

Letβs start by looking at an example that uses numbers. The property tells us to multiply a sum by a number. Hereβs our sum and hereβs the number. We need to multiply each addend of the sum. Four and six are the addends of the sum. And we multiply that by the number outside the parentheses, in this case, the three. If you solve both sides of the equation, you end up with thirty equals
thirty.
The distributive property helps us take this three and distribute it across the
four and the six, the two addends of the sum.

An algebra representation of the distributive property or a representation
with variables would look like this: π times π plus π equals π times π plus π times
π.
What weβre doing here is weβre taking the π and weβre distributing it across
the addend π and the addend π. This is also true in reverse. This is also true in reverse. In this example, we wanna take the π out, put it outside the parentheses, and add
the π and π first. Hereβs that example with numbers: five times two plus five times three is
the same thing as saying five times five or five times two plus three.
Hereβs a chart to help you summarize all the different properties. These properties will be the foundation of solving all kinds of equations.