### Video Transcript

If π is the set of elements 37,
18, and 39 and π is the set of elements nine and 12, is the product of π times π
a subset of the product of π times π?

The product of the πs contains
ordered pairs made from the elements of π, and the product of the πs contain
ordered pairs made from the elements of π. And none of the elements of π are
in π.

Well, letβs begin by looking at the
products. In order to create this set of the
product of π and π, we need to use the elements of π. So the elements of π are nine and
12. So we need to create ordered pairs
using these elements.

So letβs begin with using the
nine. And we can pair nine with itself or
12. So nine, nine would be an ordered
pair and nine, 12 would be an ordered pair. Now letβs begin with 12. We can either pair 12 with itself
or with nine. So we have 12, nine and 12, 12. And this would complete the product
of π and π.

And now for the πs. π has elements 37, 18, and 39. So letβs begin with 37. 37 can be paired with itself,
paired with 18, or paired with 39. Now letβs look at 18 as the first
of the ordered pair. So 18 could be paired with 37. It could be paired with itself or
paired with 39. Now with 39, it can be paired with
37. It could be paired with 18 or it
could be paired with itself.

So the question is asking if the
product of the πs is a subset of the product of the πs, so this means subset. So in order for the part of the πs
to be a subset of the product of the πs, all of the elements of π times π must
also be found in the product of the πs.

So we have nine, nine for the π
product. And that is not found on the π
products. Nine, 12 is also not found. So what about 12, nine? Thatβs not gonna work because itβs
not found in the set of all the blue ordered pairs, and neither is 12, 12.

And like we said before, this is
because the elements that are found in π originally, nine and 12, they are not
found in the set of π, which means it wouldnβt change for the products. Therefore, answer will be no.