### Video Transcript

Calculate the measure of angle
π to the nearest degree.

So, in this question, weβve
been given the lengths of all three sides of a triangle and weβre asked to
calculate one of the angles. Now, this is exactly the setup
required in order to use the law of cosines. So, if you were to look up the
standard law of cosines, it would probably look something like this. π squared is equal to π
squared plus π squared minus two ππ cos π΄.

If youβre looking to calculate
the size of an angle, as we are in this question, then that can be rearranged in
just a couple of steps to give you this formula here. Cos of π΄ is equal to π
squared plus π squared minus π squared all over two ππ. However, there are no πs, πs,
and πs in this question. This question involves πs, π
,
and πs, so we need to think about how we can apply this version of the law of
cosines within this question.

So, we need to look at the
structure within this law of cosines. There are two sides that are
always treated identically, π and π are both squared and added in the
numerator, whereas π squared but then subtracted. π and π also both appear in
the denominator. So, these two sides that are
treated identically are the two sides that enclose the angle weβre looking
for. So, in this case, that would be
the side of eight centimetres and 10 centimetres.

The third side, which is
treated differently in the law of cosines, it only appears in the numerator and
is subtracted rather than added. This is the side that is
opposite the angle that weβre looking to calculate. So, I donβt need πs, πs, and
πs. I can just write down the law
of cosines by thinking about where the sides are in relation to this angle.

So, we have cos of π is equal
to, well, the two sides next to it, first of all, are eight and 10, so weβll
have 8 squared plus ten squared. Then, I need to subtract the
square of the opposite side, so that will be minus 15 squared. Then, I need to divide this by
two multiplied by the two sides that enclose this angle. So, this is two multiplied by
eight multiplied by 10.

If I then evaluate all this, I
have the cause of angle π is equal to negative 61 over 160. In order to work out angle π,
I need to use cosine inverse. So, π is equal to cosine
inverse of negative 61 over 160. This gives me a value of
112.411132. And Iβve been asked to give
this to the nearest degree, so my final answer then is that angle π is 112
degrees to the nearest degree. So, again, there were no πs,
πs, or πs within our question. We just looked at the structure
of the law of cosines in order to work out which value should be substituted
where.