### Video Transcript

Determine the limit as π₯ tends to
two of π₯ to the power of five minus 32 over π₯ minus two.

The first thing we can do to try to
evaluate this limit is just to directly substitute the limit point two into the
expression. The expression is π₯ to the power
of five minus 32 over π₯ minus two. Substituting two into this, we get
two to the power of five minus 32 over two minus two. Two to the power of five is 32, so
we get 32 minus 32 over two minus two. And this is zero divided by
zero. This is an indeterminate form,
which we canβt evaluate. And so direct substitution hasnβt
given us the value of this limit.

Clearly, weβre not going to have
any success. Well, π₯ minus two is the
denominator of this fraction. So weβre going to have to rewrite
this into another form, where thatβs not the case. If you know about the factor
theorem, youβll know that we have good reason to expect that the numerator π₯ to the
power of five minus 32 has a factor of π₯ minus two. And so if we perform a polynomial
long division to this rational expression, we should expect to get a polynomial.

An alternative to performing the
polynomial long division is to rewrite the 32 as two to the power of five. And then we can apply the identity
π₯ to the power of π minus π to the power of π over π₯ minus π equals π₯ to the
power of π minus one plus π times π₯ to the power of π minus two plus π squared
times π₯ to the power of π minus three, and so on. So the last two terms are π to the
power of π minus two times π₯ plus π to the power of π minus one.

So setting π equal to two and π
equal to five, we get that this quotient is π₯ to the power of four plus two times
π₯ to the power of three plus two squared times π₯ squared plus two to the power of
three times π₯ plus two to the power of four. And we can simplify this by
evaluating the powers of two. The left-hand side and right-hand
side are equal. Apart from that, π₯ equals two and
the left-hand side is undefined. So the limit of the left-hand side
is equal to the limit of the right-hand side. And when we substitute it directly
into the limits on the right-hand side, we donβt get an indeterminate form.

Replacing π₯ by two, we get two to
the power of four plus two times two to the power of three plus four times two to
the power of two plus eight times two plus 16. And evaluating this, we get our
final answer 80. So to recap what happened,
substituting directly into π₯ to the power of five minus 32 over π₯ minus two gave
us an indeterminate form. But by applying an identity or
using polynomial long division, we could rewrite this expression as a
polynomial. And substituting directly into that
polynomial gave us the value of the limit 80.