### Video Transcript

If the line passing through points π΄: negative thirteen, eight and π΅: twenty, π¦ is
parallel to the line passing through points πΆ: negative two, zero and π·: seven, π¦, what is the
value of π¦?

For two lines to be parallel, they must have the exact same slope. They must be equal.
So in order for the slopes to be the same, we would need to set the slope formulas equal to
each other for each line.

So to find the slope of a line, itβs the change in π¦ divided by the
change in π₯, so π¦ two minus π¦ one over π₯ two minus π₯ one. Itβs also commonly written as π¦ one
minus π¦ two over π₯ one minus π₯ two.

As long as you follow that same pattern, either formula
would be fine. Here we have our points. π΄ and π΅ create a line as well as πΆ and π·; they create a
line. Now weβll label our points. π΄ the negative thirteen is π₯ one and eight is the π¦ one and π΅
thatβs our second point thatβs listed, so twenty is π₯ two and π¦ is our π¦ two, and same thing with πΆ and
π·.

Letβs first begin by finding the slope of π΄π΅, so π¦ two minus π¦ one, so π¦ minus eight, over π₯
two minus π₯ one, so twenty minus negative thirteen. So really thatβs adding.

So on the top, we have
π¦ minus eight, which doesnβt simplify. And on the bottom, twenty plus thirteen is equal to
thirty three. Now letβs do the same thing for line πΆπ·.

So for slope of πΆπ·, we would take π¦ two
minus π¦ one, so π¦ minus zero, over π₯ two minus π₯ one, so seven minus negative two. So the slope of
πΆπ· will be π¦ minus zero all over nine.

Now these lines are parallel, which means they should
have the exact same slope. So we can take both of these fractions and set them equal to each
other, and we can take these again because these lines are supposed to be parallel. So the slope
should be equal.

So if we set them equal to each other, we can find the cross product and
solve for π¦. So here weβre setting our slopes equal to each other and now we will cross-multiply.

So we have nine times π¦ minus eight equal to thirty three times π¦ minus zero. Now we
distribute. So we will take nine times π¦ and then nine times negative eight and thirty three
times π¦ and thirty three times zero.

So we have nine π¦ minus seventy two equals thirty three π¦.
The minus zero doesnβt really do anything. So now we need to isolate the π¦. So letβs go ahead
and add nine π¦ to both sides of the equation.

Doing so, the nine π¦s cancel. Weβve negative
seventy two left on the left-hand side of the equation. And on the right-hand side, thirty three
π¦ plus nine π¦ is twenty four π¦.

Now our last step would be to divide both sides by
twenty four, which means π¦ is equal to negative three. So the value of π¦ knowing that these
lines are parallel, we take the slopes, we set them equal to each other, and then we solved for π¦.
And we got that π¦ is equal to negative three.