### Video Transcript

Simplify one minus π cubed minus
one plus π times one minus π plus one plus π cubed.

To answer this question, weβre
simply going to begin by distributing each set of parentheses. Letβs start with one minus π
cubed. Now, we could use the binomial
theorem to work out one minus π cubed. But actually, itβs straightforward
enough to write this as one minus π times one minus π times one minus π and then
multiply each pair of parentheses in turn. Weβll begin by multiplying the
first term in these first two parentheses.

One times one is one. Weβll now multiply the outer
terms. One multiplied by negative π is
negative π. We multiply the inner terms and we
get another negative π. And then, we multiply the last
terms and we get π squared. Now, in fact, π squared is equal
to negative one. So, we change π squared to
negative one. And then we remember, of course,
that weβre going to be multiplying all of this by one minus π. Before we do though, letβs see if
we can simplify.

Well, one minus one is zero. So, we have negative two π times
one minus π. To distribute these parentheses, we
simply multiply negative two π by one and negative two π by negative π. That gives us negative two π plus
two π squared. But of course, we said that π
squared was equal to negative one. So, we get negative two π plus two
times negative one which is negative two minus two π. Letβs repeat this process with one
plus π times one minus π.

Again, we multiply the first term
in each expression. To get one, we multiply the outer
terms. Thatβs negative π. We then multiply the inner terms,
which is π. And finally, we multiply the last
term in each expression. π multiplied by negative π is
negative π squared. But Of course, we now know we can
replace that with negative one. And then, we see that negative π
plus π is zero. So, we obtain one minus negative
one, which is simply two. So, one plus π times one minus π
is simply two.

Now, you might have noticed that
one plus π and one minus π are complex conjugates of one another. That is, if a complex number π§ is
of the form π plus ππ, where π and π are real constants, then the complex
conjugate of π§ β sometimes denoted π§ star or π§ bar β is π minus ππ. You just change the sign of the
imaginary part. And then, you can find the product
of a complex number and its conjugate by finding the sum of the squares of the real
and imaginary parts of the original complex number. So, π§ times π§ star is simply π
squared plus π squared.

Weβre now going to distribute this
final set of parentheses. Itβs one plus π times one plus π
times one plus π. When we distribute the first set of
parentheses, we get one plus π plus π plus π squared. We replace π squared with negative
one. And then, we see that one minus one
is zero. So, we have two π times one plus
π. And once again, we distribute by
multiplying two π by one and then by π. And that gives us two π plus two
π squared, which we can then write as two π plus two times negative one, which is
negative two plus two π.

Now that we distributed each of
these sets of parentheses, weβre going to replace each term in our original
expression. We get negative two minus two π
minus two plus negative two plus two π. Now, in fact, we donβt need the
brackets. We can write this as negative two
minus two π minus two plus negative two plus two π. Well, negative two π plus two π
is zero. And so, we have negative two minus
two plus negative two, which is simply negative six.

And so, we fully simplified our
expression. Itβs negative six.