Nagwa uses cookies to ensure you get the best experience on our website. Learn more about our Privacy Policy.

Lesson: Adding and Subtracting Vectors

Video

14:57

Sample Question Videos

Worksheet • 25 Questions • 3 Videos

Q1:

Given that ⃑ 𝐴 = ( 1 , 9 ) and ⃑ 𝐡 = ( βˆ’ 4 , 1 ) , find ⃑ 𝐴 βˆ’ ⃑ 𝐡 .

  • A ( 5 , 8 )
  • B ( 8 , 5 )
  • C ( βˆ’ 3 , 1 0 )
  • D ( βˆ’ 8 , βˆ’ 5 )
  • E ( 1 0 , βˆ’ 3 )

Q2:

Given that ⃑ 𝐴 = ( 3 , 4 ) and ⃑ 𝐡 = ( 7 , 1 ) , find ⃑ 𝐴 βˆ’ ⃑ 𝐡 .

  • A ( βˆ’ 4 , 3 )
  • B ( 3 , βˆ’ 4 )
  • C ( 1 0 , 5 )
  • D ( βˆ’ 1 , 6 )
  • E ( 7 , 8 )

Q3:

Given that ⃑ 𝐴 = ( 3 , 1 ) and ⃑ 𝐡 = ( 2 , βˆ’ 1 ) , find ⃑ 𝐴 βˆ’ ⃑ 𝐡 .

  • A ( 1 , 2 )
  • B ( 2 , 1 )
  • C ( βˆ’ 4 , βˆ’ 6 )
  • D ( 2 , 3 )
  • E ( 4 , 1 )

Q4:

Given that ⃑ 𝐴 = ( 7 , βˆ’ 2 ) and ⃑ 𝐡 = ( βˆ’ 4 , βˆ’ 3 ) , find ⃑ 𝐴 βˆ’ ⃑ 𝐡 .

  • A ( 1 1 , 1 )
  • B ( 1 , 1 1 )
  • C ( 3 , βˆ’ 5 )
  • D ( 9 , βˆ’ 1 )
  • E ( 5 , βˆ’ 7 )

Q5:

Given that ⃑ 𝐴 = ( βˆ’ 8 , βˆ’ 6 ) and ⃑ 𝐡 = ( 2 , 1 0 ) , find ⃑ 𝐴 βˆ’ ⃑ 𝐡 .

  • A ( βˆ’ 1 0 , βˆ’ 1 6 )
  • B ( βˆ’ 1 6 , βˆ’ 1 0 )
  • C ( βˆ’ 6 , 4 )
  • D ( βˆ’ 2 , βˆ’ 8 )
  • E ( βˆ’ 1 4 , 1 2 )

Q6:

Given that ⃑ 𝐴 = ( βˆ’ 1 0 , βˆ’ 2 ) and ⃑ 𝐡 = ( βˆ’ 6 , βˆ’ 1 ) , find ⃑ 𝐴 βˆ’ ⃑ 𝐡 .

  • A ( βˆ’ 4 , βˆ’ 1 )
  • B ( βˆ’ 1 , βˆ’ 4 )
  • C ( βˆ’ 1 6 , βˆ’ 3 )
  • D ( βˆ’ 8 , βˆ’ 5 )
  • E ( βˆ’ 1 2 , βˆ’ 7 )

Q7:

Given that ⃑ 𝐴 = ( βˆ’ 1 , βˆ’ 6 ) , ⃑ 𝐡 = ( 6 , 1 ) , and ⃑ 𝐢 = ( 9 , 8 ) , find ⃑ 𝐴 + ⃑ 𝐡 βˆ’ ⃑ 𝐢 .

  • A ( βˆ’ 4 , βˆ’ 1 3 )
  • B ( βˆ’ 1 6 , βˆ’ 1 5 )
  • C ( 1 4 , 3 )
  • D ( 1 6 , 1 5 )
  • E ( 2 , 1 )

Q8:

Given that ⃑ 𝐴 = ( 9 , 5 ) , ⃑ 𝐡 = ( βˆ’ 1 0 , 3 ) , and ⃑ 𝐢 = ( βˆ’ 3 , 6 ) , find ⃑ 𝐴 + ⃑ 𝐡 βˆ’ ⃑ 𝐢 .

  • A ( 2 , 2 )
  • B ( 2 2 , βˆ’ 4 )
  • C ( βˆ’ 4 , 1 4 )
  • D ( βˆ’ 2 2 , 4 )
  • E ( 1 6 , 8 )

Q9:

Given that ⃑ 𝐴 = ( 0 , 3 ) , ⃑ 𝐡 = ( 2 , βˆ’ 5 ) , and ⃑ 𝐢 = ( 1 0 , 5 ) , find ⃑ 𝐴 βˆ’ ⃑ 𝐡 βˆ’ ⃑ 𝐢 .

  • A ( βˆ’ 1 2 , 3 )
  • B ( βˆ’ 8 , βˆ’ 7 )
  • C ( 1 2 , 3 )
  • D ( 1 2 , βˆ’ 3 )
  • E ( 8 , 1 3 )

Q10:

Given that ⃑ 𝐴 = ( βˆ’ 9 , βˆ’ 4 ) , ⃑ 𝐡 = ( βˆ’ 3 , 4 ) , and ⃑ 𝐢 = ( βˆ’ 1 , βˆ’ 3 ) , find ⃑ 𝐴 βˆ’ ⃑ 𝐡 βˆ’ ⃑ 𝐢 .

  • A ( βˆ’ 5 , βˆ’ 5 )
  • B ( βˆ’ 1 1 , 3 )
  • C ( βˆ’ 1 3 , βˆ’ 3 )
  • D ( 5 , 5 )
  • E ( βˆ’ 7 , βˆ’ 1 1 )

Q11:

Given that ⃑ 𝐴 = ( βˆ’ 2 , 2 ) , ⃑ 𝐡 = ( 5 , 2 ) , and ⃑ 𝐢 = ( βˆ’ 3 , βˆ’ 2 ) , find βˆ’ ⃑ 𝐴 + ⃑ 𝐡 βˆ’ ⃑ 𝐢 .

  • A ( 1 0 , 2 )
  • B ( 0 , βˆ’ 2 )
  • C ( 0 , 2 )
  • D ( 4 , βˆ’ 2 )

Q12:

Given that ⃑ 𝐴 = ( 4 , 1 ) , ⃑ 𝐡 = ( βˆ’ 2 , βˆ’ 1 ) , and ⃑ 𝐢 = ( βˆ’ 3 , 2 ) , find 2 ⃑ 𝐴 + ⃑ 𝐡 + 2 ⃑ 𝐢 .

  • A ( 0 , 5 )
  • B ( 4 , 7 )
  • C ( 8 , βˆ’ 7 )
  • D ( 1 2 , βˆ’ 3 )

Q13:

Given that ⃑ 𝐴 = ( 3 , βˆ’ 2 ) , ⃑ 𝐡 = ( 4 , βˆ’ 1 ) , and ⃑ 𝐢 = ( βˆ’ 2 , 0 ) , find βˆ’ 2 ⃑ 𝐴 + 3 ⃑ 𝐡 βˆ’ 2 ⃑ 𝐢 .

  • A ( 1 0 , 1 )
  • B ( βˆ’ 1 4 , 7 )
  • C ( 1 1 , βˆ’ 7 )
  • D ( 2 , 1 )

Q14:

Given that ⃑ 𝐴 = ( βˆ’ 6 , 3 ) and ⃑ 𝐡 = ( 8 , 7 ) , find ⃑ 𝐴 + ⃑ 𝐡 .

  • A ( 2 , 1 0 )
  • B ( 1 4 , 1 0 )
  • C ( 2 , βˆ’ 4 )
  • D ( 2 , 4 )
  • E ( βˆ’ 1 4 , 1 0 )

Q15:

Given that ⃑ 𝐴 = ( 5 , 1 ) and ⃑ 𝐡 = ( 3 , 1 ) , find 2 ⃑ 𝐴 βˆ’ 4 ⃑ 𝐡 .

  • A ( βˆ’ 2 , βˆ’ 2 )
  • B ( βˆ’ 2 2 , βˆ’ 2 )
  • C ( βˆ’ 2 , 6 )
  • D ( βˆ’ 2 , βˆ’ 6 )
  • E ( 2 2 , βˆ’ 2 )

Q16:

Given that ⃑ 𝐴 = ( 1 , 2 ) and ⃑ 𝐡 = ( βˆ’ 4 , βˆ’ 9 ) , find βˆ’ 2 ⃑ 𝐴 + 5 ⃑ 𝐡 .

  • A ( βˆ’ 2 2 , βˆ’ 4 9 )
  • B ( βˆ’ 1 8 , βˆ’ 4 9 )
  • C ( βˆ’ 2 2 , 4 1 )
  • D ( βˆ’ 2 2 , βˆ’ 4 1 )
  • E ( 1 8 , βˆ’ 4 9 )

Q17:

Given that ⃑ 𝐴 = ( βˆ’ 1 , βˆ’ 6 ) and ⃑ 𝐡 = ( βˆ’ 9 , 4 ) , find βˆ’ ⃑ 𝐴 βˆ’ 6 ⃑ 𝐡 .

  • A ( 5 5 , βˆ’ 1 8 )
  • B ( 5 3 , βˆ’ 1 8 )
  • C ( 5 5 , 3 0 )
  • D ( 5 5 , βˆ’ 3 0 )
  • E ( βˆ’ 5 3 , βˆ’ 1 8 )

Q18:

If β€– β€– = 5 u and β€– β€– = 2 v , what is the smallest that β€– + β€– u v could be?

Q19:

Given that ⃑ 𝐴 = ( 9 , βˆ’ 1 2 ) and ⃑ 𝐡 = ( 1 3 , βˆ’ 1 ) , find ⃑ 𝐴 + ⃑ 𝐡 .

  • A ( 2 2 , βˆ’ 1 3 )
  • B ( βˆ’ 1 3 , 2 2 )
  • C ( 1 3 , βˆ’ 2 2 )
  • D ( βˆ’ 2 2 , 1 3 )

Q20:

Given that ⃑ 𝐴 = ( 5 , 1 4 ) and ⃑ 𝐡 = ( 4 , 1 1 ) , find ⃑ 𝐴 + ⃑ 𝐡 .

  • A ( 9 , 2 5 )
  • B ( 2 5 , 9 )
  • C ( βˆ’ 2 5 , βˆ’ 9 )
  • D ( βˆ’ 9 , βˆ’ 2 5 )

Q21:

Given that ⃑ 𝐴 = ( 8 , 3 ) and ⃑ 𝐡 = ( βˆ’ 1 0 , βˆ’ 1 1 ) , find ⃑ 𝐴 + ⃑ 𝐡 .

  • A ( βˆ’ 2 , βˆ’ 8 )
  • B ( βˆ’ 8 , βˆ’ 2 )
  • C ( 8 , 2 )
  • D ( 2 , 8 )

Q22:

Given that ⃑ 𝐴 = ( 0 , 1 1 ) and ⃑ 𝐡 = ( 6 , 1 0 ) , find ⃑ 𝐴 + ⃑ 𝐡 .

  • A ( 6 , 2 1 )
  • B ( 2 1 , 6 )
  • C ( βˆ’ 2 1 , βˆ’ 6 )
  • D ( βˆ’ 6 , βˆ’ 2 1 )

Q23:

Given that ⃑ 𝐴 = ( 4 , βˆ’ 1 5 ) and ⃑ 𝐡 = ( βˆ’ 8 , 1 2 ) , find ⃑ 𝐴 + ⃑ 𝐡 .

  • A ( βˆ’ 4 , βˆ’ 3 )
  • B ( βˆ’ 3 , βˆ’ 4 )
  • C ( 3 , 4 )
  • D ( 4 , 3 )

Q24:

Given that ⃑ 𝐴 = ( βˆ’ 8 , βˆ’ 7 ) and ⃑ 𝐡 = ( βˆ’ 8 , 1 5 ) , find ⃑ 𝐴 + ⃑ 𝐡 .

  • A ( βˆ’ 1 6 , 8 )
  • B ( 8 , βˆ’ 1 6 )
  • C ( βˆ’ 8 , 1 6 )
  • D ( 1 6 , βˆ’ 8 )

Q25:

Given that ⃑ 𝐴 = ( βˆ’ 1 0 , βˆ’ 1 4 ) and ⃑ 𝐡 = ( βˆ’ 8 , βˆ’ 1 2 ) , find ⃑ 𝐴 + ⃑ 𝐡 .

  • A ( βˆ’ 1 8 , βˆ’ 2 6 )
  • B ( βˆ’ 2 6 , βˆ’ 1 8 )
  • C ( 2 6 , 1 8 )
  • D ( 1 8 , 2 6 )
Preview