Nagwa uses cookies to ensure you get the best experience on our website. Learn more about our Privacy Policy.

Please verify your account before proceeding.

In this lesson, we will learn how to find the limit of a function as it approaches a certain value graphically.

Q1:

Given that the following graph represents the function 𝑓 ( 𝑥 ) = 𝑥 − 4 𝑥 + 2 2 , determine l i m 𝑥 → − 2 𝑓 ( 𝑥 ) .

Q2:

Use the graph shown to find l i m 𝑥 → 2 𝑓 ( 𝑥 ) .

Q3:

Using the graph shown, determine l i m 𝑥 → 3 𝑓 ( 𝑥 ) .

Q4:

Using the following figure, determine the limit of the function as 𝑥 → 0 .

Q5:

If graph shown represents the function 𝑓 ( 𝑥 ) = 𝑥 − 3 , determine l i m 𝑥 → − 1 𝑓 ( 𝑥 ) .

Q6:

Determine l i m 𝑥 → 0 𝑓 ( 𝑥 ) using the graph below.

Q7:

Using the graph representing the function 𝑓 ( 𝑥 ) = ( 𝑥 + 3 ) + 2 2 , determine l i m 𝑥 → − 3 𝑓 ( 𝑥 ) .

Q8:

Determine l i m 𝑥 → − 3 + 𝑓 ( 𝑥 ) .

Q9:

Determine the limit as 𝑥 → 3 of the function represented by the graph.

Q10:

If the following graph represents the function 𝑓 ( 𝑥 ) = ( 𝑥 − 1 ) − 3 3 , determine l i m 𝑥 → 1 𝑓 ( 𝑥 ) .

Q11:

Determine the limit of the function as 𝑥 → − 3 .

Q12:

Determine l i m 𝑥 → 2 𝑓 ( 𝑥 ) if it exists.

Q13:

Determine the limit of the function as 𝑥 → 1 .

Q14:

Find l i m 𝑥 → 5 𝑓 ( 𝑥 ) .

Q15:

Determine the limit of the function as 𝑥 → 1 , if it exists.

Q16:

Determine the limit as 𝑥 → 2 of the function represented by the graph.

Q17:

Determine l i m 𝑥 → 0 𝑓 ( 𝑥 ) , if it exists.

Q18:

Determine l i m 𝑥 → − 3 𝑓 ( 𝑥 ) , if it exists.

Q19:

Determine l i m 𝑥 → − 2 𝑓 ( 𝑥 ) , if it exists.

Q20:

Determine l i m 𝑥 → 8