Nagwa uses cookies to ensure you get the best experience on our website. Learn more about our Privacy Policy.

Please verify your account before proceeding.

In this lesson, we will learn how to use the properties of tangents to find the measure of an angle of tangency or an inscribed angle with it in the same arc.

Q1:

Given that οͺ π΅ πΆ is a tangent to the circle, find π β π΄ π΅ πΆ .

Q2:

Q3:

Given that οͺ π΅ πΆ is a tangent to the circle below, find π β π΄ π΅ πΆ and π¦ β .

Q4:

Q5:

Q6:

β ο© ο© ο© ο© β π΅ πΆ is tangent to the circle π at π΅ . Find π β π΄ π΅ πΆ .

Q7:

Given that ο« π΄ π· is a tangent to the circle, find π β π΅ π΄ π· .

Q8:

If π β π π΄ π΅ = 4 7 β , find π β π΄ πΆ π· .

Q9:

Given that ο« π΄ π· is a tangent to the circle and π β πΆ π΄ π· = 9 7 β , find π β π΄ π΅ πΆ and π¦ .

Q10:

Given that π β πΈ πΆ π· = 5 4 β and π β πΉ π΅ π· = 7 8 β , find π₯ and π¦ .

Q11:

Find π β π΄ πΆ π· .

Q12:

Given that π β π΅ πΈ πΆ = 3 1 β , find π β πΆ and π β π΅ π· π΄ .

Q13:

If ο« π΄ π· and ο« π΄ πΈ are tangents to the circle π and π β π΄ = 6 2 β , find π β πΈ π π· .

Q14:

Find π β π΅ π πΆ .

Q15:

Given that οͺ π΅ πΆ is a tangent to the circle, and π β π· π΄ π΅ = 5 1 β , determine π β π΄ π΅ πΆ and π β π΄ πΈ π΅ .

Q16:

Given that π β π΄ πΆ π΅ = 8 0 β , find π β π΄ π· π .

Q17:

In the figure, π΄ π΅ is a diameter of circle π . Given that π β πΆ π΅ π· = 4 3 β , find π β π΄ π π· .

Q18:

Find π β π΅ π΄ πΆ .

Q19:

Given the figure below, find π β π πΆ π΅ and π β πΆ π΅ π΄ .

Q20:

Given that π β π΄ = 8 4 β , where π΄ π΅ and π΄ πΆ are tangent to the circle at π΅ and πΆ , find π β πΈ .

Q21:

Given that π β π π΅ πΆ = 2 8 β , find π β π΄ .

Q22:

Given that π β π π΄ πΆ = 3 6 β , determine π β π΅ π΄ π and π β π΄ π πΆ .

Q23:

If π β π΄ π΅ πΆ = 8 3 β and π β π π΄ π΅ = 3 8 β , find π β πΆ π· π΅ .

Q24:

Find π β πΆ π΄ π΅ .

Q25:

Given that β ο© ο© ο© ο© β π΅ πΆ is a tangent to the circle, and π β π΅ π΄ π· = 6 3 β , find π β π΄ π΅ πΆ and π β π΄ πΈ π΅ .

Donβt have an account? Sign Up