Nagwa uses cookies to ensure you get the best experience on our website. Learn more about our Privacy Policy.

Lesson: Equation of a Circle

Sample Question Videos

Worksheet • 16 Questions • 4 Videos

Q1:

Write, in the form π‘Ž π‘₯ + 𝑏 𝑦 + 𝑐 π‘₯ + 𝑑 𝑦 + 𝑒 = 0   , the equation of the circle of radius 10 and center ( 4 , βˆ’ 7 ) .

  • A π‘₯ + 𝑦 βˆ’ 8 π‘₯ + 1 4 𝑦 βˆ’ 3 5 = 0  
  • B π‘₯ + 𝑦 + 8 π‘₯ βˆ’ 1 4 𝑦 βˆ’ 3 5 = 0  
  • C π‘₯ + 𝑦 βˆ’ 4 π‘₯ + 7 𝑦 + 1 6 5 = 0  
  • D π‘₯ + 𝑦 + 4 π‘₯ βˆ’ 7 𝑦 + 1 6 5 = 0  

Q2:

Write the equation of the circle of centre ( 0 , 5 ) and diameter 10.

  • A π‘₯ + ( 𝑦 βˆ’ 5 ) = 2 5 2 2
  • B π‘₯ + ( 𝑦 + 5 ) = 2 5 2 2
  • C π‘₯ + ( 𝑦 + 5 ) = 5
  • D π‘₯ + ( 𝑦 βˆ’ 5 ) = 5

Q3:

Give the general form of the equation of the circle centre ( 8 , βˆ’ 2 ) and diameter 10.

  • A π‘₯ + 𝑦 βˆ’ 1 6 π‘₯ + 4 𝑦 + 4 3 = 0 2 2
  • B π‘₯ + 𝑦 + 1 6 π‘₯ βˆ’ 4 𝑦 + 4 3 = 0 2 2
  • C π‘₯ + 𝑦 + 1 6 π‘₯ βˆ’ 4 𝑦 βˆ’ 3 2 = 0 2 2
  • D π‘₯ + 𝑦 βˆ’ 1 6 π‘₯ + 4 𝑦 βˆ’ 3 2 = 0 2 2

Q4:

Find the general form of the equation of circle 𝑀 , given that it touches the two coordinate axes at 𝐴 and 𝐡 and that 𝑀 𝑂 = 6 √ 2 .

  • A π‘₯ + 𝑦 βˆ’ 1 2 π‘₯ βˆ’ 1 2 𝑦 + 3 6 = 0 2 2
  • B π‘₯ + 𝑦 + 1 2 π‘₯ + 1 2 𝑦 = 0 2 2
  • C π‘₯ + 𝑦 βˆ’ 1 2 π‘₯ βˆ’ 1 2 𝑦 = 0 2 2
  • D π‘₯ + 𝑦 βˆ’ 6 π‘₯ βˆ’ 6 𝑦 + 3 6 = 0 2 2

Q5:

Write the equation of the circle of center ( 8 , 4 ) and radius 9.

  • A ( π‘₯ βˆ’ 8 ) + ( 𝑦 βˆ’ 4 ) = 8 1 2 2
  • B ( π‘₯ + 8 ) + ( 𝑦 + 4 ) = 8 1 2 2
  • C ( π‘₯ + 8 ) + ( 𝑦 + 4 ) = 9
  • D ( π‘₯ βˆ’ 8 ) + ( 𝑦 βˆ’ 4 ) = 9

Q6:

Determine the equation of a circle with radius = 1 7 c m , given that it touches the 𝑦 -axis at the point ( 0 , βˆ’ 7 ) , and its centre lies in the third quadrant.

  • A ( π‘₯ + 1 7 ) + ( 𝑦 + 7 ) = 2 8 9 2 2
  • B π‘₯ + ( 𝑦 + 7 ) = 2 8 9 2 2
  • C ( π‘₯ + 7 ) + 𝑦 = 2 8 9 2 2
  • D ( π‘₯ βˆ’ 1 7 ) + ( 𝑦 βˆ’ 7 ) = 2 8 9 2 2

Q7:

What is the equation of the circle of radius 24 that lies in the third quadrant and is tangent to the two axes?

  • A π‘₯ + 𝑦 + 4 8 π‘₯ + 4 8 𝑦 + 5 7 6 = 0 2 2
  • B π‘₯ + 𝑦 βˆ’ 4 8 π‘₯ βˆ’ 4 8 𝑦 + 5 7 6 = 0 2 2
  • C π‘₯ + 𝑦 βˆ’ 4 8 π‘₯ + 4 8 𝑦 + 5 7 6 = 0 2 2
  • D π‘₯ + 𝑦 + 2 4 π‘₯ + 2 4 𝑦 + 5 7 6 = 0 2 2

Q8:

Find the point of intersection between the line with equation 𝑦 = 1 2 5 π‘₯ βˆ’ 2 6 and the circle with center ( βˆ’ 2 , 3 ) and radius 13.

  • A ( 1 0 , βˆ’ 2 )
  • B ( 2 5 , 3 4 )
  • C ( βˆ’ 2 , βˆ’ 1 0 )
  • D ( 1 1 , 3 )
  • E ( 3 , βˆ’ 9 )

Q9:

Let us consider a circle of radius 4 and center ( 2 , βˆ’ 7 ) .

Write the equation of the circle.

  • A ( π‘₯ βˆ’ 2 ) + ( 𝑦 + 7 ) = 1 6 2 2
  • B ( π‘₯ βˆ’ 2 ) + ( 𝑦 βˆ’ 7 ) = 1 6 2 2
  • C ( π‘₯ βˆ’ 2 ) + ( 𝑦 + 7 ) = 4 2 2
  • D ( π‘₯ + 2 ) + ( 𝑦 βˆ’ 7 ) = 1 6 2 2
  • E ( π‘₯ + 2 ) + ( 𝑦 βˆ’ 7 ) = 4 2 2

The circle is dilated by a factor of 2. The center of dilation is the center of the circle. Write the equation of the circle.

  • A ( π‘₯ βˆ’ 2 ) + ( 𝑦 + 7 ) = 6 4 2 2
  • B ( π‘₯ + 2 ) + ( 𝑦 βˆ’ 7 ) = 3 2 2 2
  • C ( π‘₯ βˆ’ 2 ) + ( 𝑦 + 7 ) = 3 2 2 2
  • D ( π‘₯ + 2 ) + ( 𝑦 βˆ’ 7 ) = 6 4 2 2
  • E ( π‘₯ βˆ’ 2 ) + ( 𝑦 + 7 ) = 8 2 2

Q10:

Let us consider a circle of radius 6 and center ( βˆ’ 2 , βˆ’ 5 ) .

Write the equation of the circle.

  • A ( π‘₯ + 2 ) + ( 𝑦 + 5 ) = 3 6 2 2
  • B ( π‘₯ βˆ’ 2 ) + ( 𝑦 βˆ’ 5 ) = 3 6 2 2
  • C ( π‘₯ βˆ’ 2 ) + ( 𝑦 βˆ’ 5 ) = 6 2 2
  • D ( π‘₯ + 2 ) + ( 𝑦 + 5 ) = 6 2 2

The circle is dilated by a factor of 1 3 . The center of dilation is the center of the circle. Write the equation of the circle.

  • A ( π‘₯ + 2 ) + ( 𝑦 + 5 ) = 4 2 2
  • B ( π‘₯ βˆ’ 2 ) + ( 𝑦 βˆ’ 5 ) = 1 2 2 2
  • C ( π‘₯ + 2 ) + ( 𝑦 + 5 ) = 1 2 2 2
  • D ( π‘₯ βˆ’ 2 ) + ( 𝑦 βˆ’ 5 ) = 4 2 2
  • E ( π‘₯ + 2 ) + ( 𝑦 + 5 ) = 2 2 2

Q11:

A circle is tangent to the π‘₯ -axis at ( 8 , 0 ) and cuts a chord of length 2 √ 3 7 7 on the negative 𝑦 -axis. What is the equation of the circle?

  • A π‘₯ + 𝑦 βˆ’ 1 6 π‘₯ + 4 2 𝑦 + 6 4 = 0 2 2
  • B π‘₯ + 𝑦 βˆ’ 1 6 π‘₯ + 4 2 𝑦 βˆ’ 1 0 0 3 = 0 2 2
  • C π‘₯ + 𝑦 βˆ’ 1 6 π‘₯ + 4 2 𝑦 + 4 4 1 = 0 2 2
  • D π‘₯ + 𝑦 βˆ’ 1 6 π‘₯ + 4 2 𝑦 + 1 2 8 = 0 2 2

Q12:

A circle of radius 39 length units has its centre 𝑀 at the point ( βˆ’ 1 1 , βˆ’ 1 5 ) . Given that the circle intersects the π‘₯ -axis at points 𝐴 and 𝐡 , determine the area of β–³ 𝑀 𝐴 𝐡 .

Q13:

In the figure below, find the equation of the circle.

  • A ( π‘₯ + 5 ) + ( 𝑦 + 4 ) = 2 5 2 2
  • B ( π‘₯ βˆ’ 5 ) + ( 𝑦 βˆ’ 4 ) = 2 5 2 2
  • C ( π‘₯ βˆ’ 5 ) + ( 𝑦 βˆ’ 4 ) = 5 2 2
  • D ( π‘₯ + 5 ) + ( 𝑦 + 4 ) = 5 2 2

Q14:

Given 𝐴 ( 1 0 , 9 ) and 𝐡 ( 1 0 , βˆ’ 1 ) , find the equation of the circle with diameter 𝐴 𝐡 .

  • A π‘₯ + 𝑦 βˆ’ 2 0 π‘₯ βˆ’ 8 𝑦 + 9 1 = 0  
  • B π‘₯ + 𝑦 βˆ’ 2 0 π‘₯ βˆ’ 1 8 𝑦 + 1 5 6 = 0  
  • C π‘₯ + 𝑦 βˆ’ 2 0 π‘₯ βˆ’ 8 𝑦 + 1 6 = 0  
  • D π‘₯ + 𝑦 βˆ’ 2 0 π‘₯ + 2 𝑦 + 7 6 = 0  

Q15:

Write, in the form π‘Ž π‘₯ + 𝑏 𝑦 + 𝑐 π‘₯ + 𝑑 𝑦 + 𝑒 = 0   , the equation of the circle of radius 10 and center ( βˆ’ 7 , βˆ’ 8 ) .

  • A π‘₯ + 𝑦 + 1 4 π‘₯ + 1 6 𝑦 + 1 3 = 0  
  • B π‘₯ + 𝑦 βˆ’ 1 4 π‘₯ βˆ’ 1 6 𝑦 + 1 3 = 0  
  • C π‘₯ + 𝑦 + 7 π‘₯ + 8 𝑦 + 2 1 3 = 0  
  • D π‘₯ + 𝑦 βˆ’ 7 π‘₯ βˆ’ 8 𝑦 + 2 1 3 = 0  

Q16:

Write, in the form π‘Ž π‘₯ + 𝑏 𝑦 + 𝑐 π‘₯ + 𝑑 𝑦 + 𝑒 = 0   , the equation of the circle of radius 4 and center ( βˆ’ 6 , 3 ) .

  • A π‘₯ + 𝑦 + 1 2 π‘₯ βˆ’ 6 𝑦 + 2 9 = 0  
  • B π‘₯ + 𝑦 βˆ’ 1 2 π‘₯ + 6 𝑦 + 2 9 = 0  
  • C π‘₯ + 𝑦 + 6 π‘₯ βˆ’ 3 𝑦 + 6 1 = 0  
  • D π‘₯ + 𝑦 βˆ’ 6 π‘₯ + 3 𝑦 + 6 1 = 0  
Preview