Nagwa uses cookies to ensure you get the best experience on our website. Learn more about our Privacy Policy.

In this lesson, we will learn how to find the complement of a set.

Q1:

Given π = { 0 , 2 , 5 } , π = { 9 , 5 } , and a universal set π = { 5 , 8 , 9 , 2 , 1 , 0 } , find π β© π β² .

Q2:

Take the universal set to be the set of numbers between, but not including, 1 and 12. Given that π΄ = { 2 , 3 , 4 , 8 } β² and π΅ = { 5 , 6 , 9 , 1 0 } β² , what is π΄ β© π΅ β² ?

Q3:

Given π = { 2 , 4 } , π = { 4 , 5 } , and a universal set π = { 5 , 4 , 2 , 9 } , find ( π β© π ) β² β² .

Q4:

Given that π = { 8 , 5 , 0 } , π = { 2 , 5 , 0 } , and π β© π = { 7 , 3 } , find π β© π .

Q5:

Take the universal set to be the set of even numbers less than 15. Given that π΄ = { 6 , 8 , 1 0 , 1 2 } and π΅ = { 2 , 6 , 1 4 } , find ( π΄ β© π΅ ) β² .

Q6:

Take the universal set to be the set of odd numbers less than 14. Given that π΄ = { 3 , 7 , 1 1 , 1 3 } and π΅ = { 1 , 3 , 5 , 9 , 1 3 } , find ( π΄ β© π΅ ) β² .

Q7:

Given π = { 8 , 5 } , π = { 4 , 5 } , and a universal set π = { 1 0 , 8 , 4 , 5 } , find ( π βͺ π ) β² β² .

Q8:

Given π΄ = { 9 , 1 1 , 1 5 } and π΅ = { 7 , 9 , 1 1 } belong to a universal set π which is the set of odd numbers less than 17, what is ( π΄ βͺ π΅ ) β² ?

Q9:

Take the universal set to be the set of factors of the number 40. Given that π΄ is the set of factors of the number 2, find π΄ β² .

Q10:

Given π = { 2 , 6 } , π = { 6 , 4 , 9 } , and a universal set π = { 2 , 3 , 6 , 8 , 4 , 9 } , find ( π β© π ) β² β² β² .

Q11:

Given π = { 6 , 1 0 , 3 } , π = { 6 , 2 , 3 } , and a universal set π = { 3 , 1 0 , 6 , 2 } , find ( π β© π ) β² .

Q12:

Take the universal set to be the set of integers between, but not including, 1 and 11. Given that π΄ = { 2 , 5 , 6 , 7 } β² and π΅ = { 4 , 6 , 7 } β² , what is ( π΄ β© π΅ ) β² ?

Q13:

Given π = { 9 , 8 , 1 0 } , π = { 1 0 , 9 } , and a universal set π = { 3 , 9 , 1 0 , 8 } , find π β© π β² .

Q14:

Take the universal set to be the set of numbers between, but not including, 1 and 10. If π΄ = { 3 , 5 , 8 } β² and π΅ = { 5 , 6 , 7 , 8 } β² , what is π΄ β© π΅ ?

Q15:

Take the universal set to be the set of numbers between, but not including, 1 and 12. Given that π΄ = { 4 , 6 , 7 } and π΅ = { 2 , 3 , 4 , 5 , 6 , 9 } , what is ( π΄ βͺ π΅ ) ?

Q16:

Given π = { 0 , 9 , 7 } , π = { 8 , 0 , 9 } , and a universal set π = { 9 , 7 , 8 , 0 } , find οΊ π β© π ο .

Q17:

Given that π = { 8 , 5 , 4 } , π = { 3 , 5 , 4 } , and π β© π = { 6 , 9 } , find π β© π .

Q18:

If the universal set is π = { 6 , 1 0 , 7 , 0 , 3 } , and π = { 0 , 3 } , what is π ?

Q19:

If the universal set is π = { 5 , 7 , 4 , 1 0 , 2 } , and π = { 7 , 1 0 , 4 } , what is π ?

Q20:

What is β β© β€ β² ?

Q21:

What is β β© β β² ?

Q22:

If π΄ is a subset of a universal set π , what is ( π΄ ) β² β² ?

Q23:

If the universal set is π = { 9 , 3 , 5 , 0 , 6 , 2 } , π = { 5 , 6 , 2 } , and π = { 2 , 9 } , what is ( π βͺ π ) β² β² ?

Q24:

If the universal set π = { 9 , 1 , 6 , 1 0 } , π = { 9 , 6 } , and π = { 1 0 , 1 , 6 } , what is ( π βͺ π ) β² β² β² ?

Q25:

If the universal set π = { 0 , 6 , 9 , 3 , 8 } , π = { 3 , 8 , 6 } , and π = { 8 , 3 } , what is π β© π β² β² ?

Donβt have an account? Sign Up