Nagwa uses cookies to ensure you get the best experience on our website. Learn more about our Privacy Policy.

Lesson: Solving Rational Equations Using the Least Common Denominator

Sample Question Videos

Worksheet • 7 Questions • 4 Videos

Q1:

What value of π‘₯ solves the equation π‘₯ βˆ’ 5 4 βˆ’ 1 = π‘₯ 2 ?

Q2:

Solve π‘₯ βˆ’ 3 4 + 1 3 = 2 π‘₯ + 3 2 for π‘₯ .

  • A βˆ’ 2 3 9
  • B βˆ’ 1 4 9
  • C 2 3 9
  • D 2 4 9
  • E βˆ’ 2 4 9

Q3:

Find the solution set of the equation

  • A βˆ…
  • B { βˆ’ 4 }
  • C { 5 }
  • D { 2 }
  • E { 5 , βˆ’ 5 }

Q4:

Given that 7 π‘₯ π‘₯ βˆ’ 3 = 1 6 π‘₯ π‘₯ + 3 βˆ’ 9 , find the value of π‘₯ .

  • A 2 7 2 3
  • B3
  • C 2 7 5
  • D 2 7 1 7
  • E 2 7 1 1

Q5:

Given that 2 √ π‘₯ βˆ’ √ 1 1 = 2 √ π‘₯ + √ 1 1 + 2 √ 1 1 , find the value of π‘₯ .

  • A33
  • B 5 5 2
  • C11
  • D0
  • E22

Q6:

Simplify the function 𝑛 ( π‘₯ ) = 5 π‘₯ βˆ’ 1 5 π‘₯ π‘₯ + 2 π‘₯ βˆ’ 1 5 π‘₯ βˆ’ 3 6 βˆ’ π‘₯ π‘₯ βˆ’ π‘₯ βˆ’ 3 0 2 4 3 2 2 2 , then find the solution set of the equation 𝑛 ( π‘₯ ) = 0 .

  • A 𝑛 ( π‘₯ ) = π‘₯ + 1 π‘₯ , solution set = { βˆ’ 1 }
  • B 𝑛 ( π‘₯ ) = ( π‘₯ + 1 ) π‘₯ ( π‘₯ βˆ’ 1 ) 2 , solution set = { βˆ’ 1 }
  • C 𝑛 ( π‘₯ ) = π‘₯ + 1 π‘₯ , solution set = { 0 }
  • D 𝑛 ( π‘₯ ) = π‘₯ βˆ’ 1 π‘₯ , solution set = { 0 }
  • E 𝑛 ( π‘₯ ) = π‘₯ βˆ’ 1 π‘₯ , solution set = { 1 }

Q7:

What is the solution set of the equation 1 π‘₯ βˆ’ 1 βˆ’ 1 π‘₯ = 1 π‘₯ βˆ’ 1 π‘₯ + 1 ?

  • A { }
  • B { βˆ’ 1 }
  • C { 2 }
  • D { 1 }
  • E { 0 }
Preview