In this lesson, we will learn how to use the summation notation to describe an arithmetic series and how to find the summationβs value.

Q1:

Represent the series 6 3 + 1 1 2 + 1 6 1 + β― + 3 0 8 using sigma notation.

Q2:

Represent the series 4 9 + 8 6 + 1 2 3 + β― + 2 3 4 using sigma notation.

Q3:

Represent the series 4 1 + 7 1 + 1 0 1 + β― + 4 6 1 using sigma notation.

Q4:

Represent the series 6 5 + 1 1 3 + 1 6 1 + β― + 4 4 9 using sigma notation.

Q5:

Express the series 2 6 + 3 9 + 5 2 + β― + ( 1 3 π + 1 3 ) in sigma notation.

Q6:

Express the series 4 0 + 6 1 + 8 2 + β― + ( 2 1 π + 1 9 ) in sigma notation.

Q7:

Express the series 4 2 + 4 4 + 4 6 + β― + ( 2 π + 4 0 ) in sigma notation.

Q8:

Express the series 1 2 + 1 9 + 2 6 + β― + ( 7 π + 5 ) in sigma notation.

Q9:

Find the value of ( 6 + 7 + 8 + + 1 4 ) β ( 6 + 7 + 8 + + 1 3 ) 2 2 .

Q10:

Find the value of 7 + 9 + 1 1 + β― + 3 7 1 2 + 1 4 + 1 6 + β― + 1 7 2 .

Q11:

Find the value of 1 + 4 + 7 + β― + 1 3 8 8 + 9 8 + 1 0 8 + β― + 1 3 8 .

Q12:

Find the value of 9 + 1 9 + 2 9 + β― + 1 1 9 2 4 + 3 0 + 3 6 + β― + 7 2 .

Donβt have an account? Sign Up