Nagwa uses cookies to ensure you get the best experience on our website. Learn more about our Privacy Policy.

Please verify your account before proceeding.

In this lesson, we will learn how to evaluate one-sided limits.

Q1:

Determine l i m π₯ β β 4 β π ( π₯ ) .

Q2:

Find l i m π₯ β 5 β π ( π₯ ) , if it exists.

Q3:

Find l i m π₯ β 9 2 2 + π₯ + 1 8 π₯ + 8 1 π₯ β 7 π₯ β 1 8 .

Q4:

Determine l i m π₯ β β 9 β π ( π₯ ) and l i m π₯ β β 9 + π ( π₯ ) , given that

Q5:

Discuss the existence of l i m ο β ο± ο½ ο£ ο© π ( π₯ ) given

Q6:

Find l i m π₯ β π 6 β π ( π₯ ) given

Q7:

Find l i m π₯ β β π 6 + π ( π₯ ) given

Q8:

Find l i m π₯ β 0 + π ( π₯ ) given

Q9:

Find l i m π₯ β π β π ( π₯ ) given

Q10:

Discuss the existence of l i m π₯ β 1 4 β π ( π₯ ) given

Q11:

Discuss the existence of l i m π₯ β 4 β π ( π₯ ) given

Q12:

Given π ( π₯ ) = 4 π₯ β 4 4 | π₯ β 1 1 | , find οΉ π ( 1 1 ) ο + οΉ π ( 1 1 ) ο β 2 + 2 .

Q13:

Determine the following infinite limit: l i m l n s i n π₯ β 0 + 5 ( π₯ ) .

Q14:

Determine the following infinite limit: l i m c o t π₯ β 3 π + β 5 2 π₯ .

Q15:

Determine the following infinite limit: l i m s e c π₯ β 5 π 2 + β 1 π₯ π₯ .

Q16:

Find l i m l n π₯ β 0 + οΌ 5 π₯ β 8 3 π₯ ο .

Q17:

Determine l i m π₯ β β 7 β π ( π₯ ) and l i m π₯ β β 7 + π ( π₯ ) , given that

Donβt have an account? Sign Up