Nagwa uses cookies to ensure you get the best experience on our website. Learn more about our Privacy Policy.

In this lesson, we will learn how to calculate the Hall voltage across a conductor when a magnetic field is applied perpendicular to the current.

Q1:

A strip of copper with a cross-sectional area of 4 . 6 Γ 1 0 β 6 m^{2} is placed in a uniform magnetic field of magnitude 3.11 T. The Hall electric field is measured to be 2 . 5 Γ 1 0 β 3 V/ms. In modeling the characteristics of the current in the strip, use a value of π = 9 . 2 Γ 1 0 2 8 electrons/m^{3} for copper.

What is the drift speed of the conduction electrons?

What is the current in the strip?

What is the Hall coefficient of the strip?

Q2:

The density of charge carriers for copper is 8 . 7 4 Γ 1 0 2 8 electrons per cubic meter. A probe made of a copper plate of length 3.0 cm, width 2.0 cm, and thickness 1.0 cm is placed in magnetic field of 2.5 T, aligned perpendicular to the length-width plane. If a current of 1.5 A is passed through the probe, what Hall voltage value does it measure?

Q3:

A velocity selector in a mass spectrometer uses a magnetic field of magnitude 0.127 T. The velocity selector selects a speed of 4 . 6 Γ 1 0 6 m/s.

What is the required electric field magnitude?

What is the potential difference across the selectorβs plates if they are separated by a distance of 1.33 cm?

Donβt have an account? Sign Up