Nagwa uses cookies to ensure you get the best experience on our website. Learn more about our Privacy Policy.

Lesson: Introduction to Sequences

Sample Question Videos

Worksheet • 17 Questions • 2 Videos

Q1:

Is the sequence ( 9 , 6 , 3 , 0 , , 2 1 ) finite or infinite?

  • Ainfinite
  • Bfinite

Q2:

Is the sequence ( 1 4 , 1 7 , 2 0 , 2 3 , ) finite or infinite?

  • Afinite
  • Binfinite

Q3:

Is the sequence ( 8 8 , 8 7 , 8 6 , 8 5 ) finite or infinite?

  • Ainfinite
  • Bfinite

Q4:

Is the sequence ( 7 2 , 7 7 , 8 2 , 8 7 , , 1 2 2 ) finite or infinite?

  • Ainfinite
  • Bfinite

Q5:

Is the sequence with general term 3 𝑛 + 7 9 , where 𝑛 + , finite or infinite?

  • Afinite
  • Binfinite

Q6:

Is the sequence with general term 8 𝑛 2 2 3 , where 𝑛 + , finite or infinite?

  • Afinite
  • Binfinite

Q7:

Is the sequence with general term 5 𝑛 + 7 3 3 , where 𝑛 + , finite or infinite?

  • Afinite
  • Binfinite

Q8:

Find the range of the infinite arithmetic sequence represented in the figure below.

  • A { 4 , 0 , 4 , 8 , }
  • B
  • C { 1 , 2 , 3 , 4 , }
  • D { 4 , 0 , 4 , 8 }
  • E [ 8 , 4 ]

Q9:

Find the range of the infinite arithmetic sequence represented in the figure below.

  • A { 0 , 1 , 2 , 3 , }
  • B
  • C { 1 , 2 , 3 , 4 , }
  • D { 0 , 1 , 2 , 3 }
  • E [ 0 , 9 ]

Q10:

Find the range of the infinite arithmetic sequence represented in the figure below.

  • A { 3 , 5 , 7 , 9 , }
  • B
  • C { 1 , 2 , 3 , 4 , }
  • D { 3 , 5 , 7 , 9 }
  • E [ 9 , 3 ]

Q11:

If we consider a sequence to be a function, what is the function’s domain?

  • A +
  • B
  • C
  • D
  • E +

Q12:

Consider the sequence given by 𝑓 ( 0 ) = 0 , 𝑓 ( 𝑛 + 1 ) = 1 𝑓 ( 𝑛 ) .

List the numbers at positions 2, 3, and 4.

  • A0, 1, 0
  • B0, 1, 1
  • C1, 0, 1
  • D0, 0, 1
  • E1, 1, 0

What is the number at position 12 341?

What is the range of this sequence?

  • A { 0 , 1 }
  • B { 1 , 2 }
  • C { 2 , 3 , 4 }
  • D { 0 , 1 , 2 }

Q13:

Consider the sequence 1 , 2 , 3 , 4 , 5 , .

Write the sequence of the first 5 odd terms: 𝑎 , 𝑎 , 𝑎 , 𝑎 , 𝑎 1 3 5 7 9 .

  • A 1 , 3 , 5 , 7 , 9
  • B 1 , 2 , 3 , 4 , 5
  • C1, 3, 5, 7, 9
  • D2, 4, 6, 8, 10
  • E 2 , 4 , 6 , 8 , 1 0

Write a piecewise function that describes 𝑎 𝑛 .

  • A 𝑎 = 𝑛 𝑛 𝑛 𝑛 𝑛 i f i s o d d i f i s e v e n
  • B 𝑎 = 𝑛 1 𝑛 𝑛 + 1 𝑛 𝑛 i f i s o d d i f i s e v e n
  • C 𝑎 = 𝑛 + 1 𝑛 𝑛 𝑛 𝑛 i f i s o d d i f i s e v e n
  • D 𝑎 = 𝑛 𝑛 𝑛 + 1 𝑛 𝑛 i f i s o d d i f i s e v e n
  • E 𝑎 = 𝑛 𝑛 𝑛 1 𝑛 𝑛 i f i s o d d i f i s e v e n

Q14:

List the first 10 elements of the sequence where the 𝑛 th term is defined as the remainder when 𝑛 is divided by 4.

  • A 1 , 2 , 3 , 0 , 1 , 2 , 3 , 0 , 1 , 2 ,
  • B 1 , 2 , 3 , 1 , 2 , 3 , 1 , 2 , 3 , 1 ,
  • C 1 , 2 , 0 , 1 , 2 , 0 , 1 , 2 , 0 , 1 ,
  • D 2 , 3 , 0 , 2 , 3 , 0 , 2 , 3 , 0 , 2 ,
  • E 1 , 3 , 0 , 1 , 3 , 0 , 1 , 3 , 0 , 1 ,

What is the range of this sequence?

  • A { 0 , 1 , 2 , 3 }
  • B { 1 , 2 , 3 }
  • C { 0 , 1 , 2 }
  • D { 0 , 2 , 3 }
  • E { 0 , 1 , 3 }

Q15:

Consider the infinite sequence 4 , 7 , 1 0 , 1 3 , 1 6 , . We can think of this sequence as a function whose graph is partially sketched.

Describe the domain of the function.

  • AAll natural numbers: 1 , 2 , 3 , 4 , 5 ,
  • B { 0 , 1 , 2 , 3 , 4 , 5 , }
  • CAll integers
  • D { 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 }
  • E ( 1 , )

Describe the range of the function.

  • AAll numbers 𝑦 satisfying 𝑦 = 3 𝑥 + 1 for integers 𝑥 1
  • BAll numbers 𝑦 satisfying 𝑦 = 3 𝑥 + 1 for integers 1 𝑥 8
  • CAll numbers 𝑦 satisfying 𝑦 = 3 𝑥 + 1 for reals 𝑥 1
  • DAll numbers 𝑦 satisfying 𝑦 = 3 𝑥 + 1 for integers < 𝑥 <
  • EAll numbers 𝑦 satisfying 𝑦 = 3 𝑥 + 1 for integers 𝑥 0

Q16:

Is each function whose domain is a sequence?

  • Ayes
  • Bno

Q17:

The graph of the first six terms of an arithmetic sequence is shown.

Write, in the form 𝑦 = 𝑚 𝑥 + 𝑏 , an equation for the sequence.

  • A 𝑦 = 2 𝑥 + 5
  • B 𝑦 = 5 𝑥 + 8
  • C 𝑦 = 2 𝑥 + 5
  • D 𝑦 = 2 𝑥 5
  • E 𝑦 = 2 𝑥 5

Find the 27th term of the sequence.

Preview