Nagwa uses cookies to ensure you get the best experience on our website. Learn more about our Privacy Policy.

Lesson: Rewriting Expressions

Sample Question Videos

Worksheet • 17 Questions • 3 Videos

Q1:

Factorise fully 6 4 π‘₯ βˆ’ 8 1 2 .

  • A ( 8 π‘₯ + 9 ) ( 8 π‘₯ βˆ’ 9 )
  • B ( π‘₯ βˆ’ 7 2 ) 2
  • C ( 8 π‘₯ βˆ’ 9 ) 2
  • D ( π‘₯ + 7 2 ) ( π‘₯ βˆ’ 7 2 )
  • E ( 9 π‘₯ + 8 ) ( 9 π‘₯ βˆ’ 8 )

Q2:

Factor the expression π‘₯ βˆ’ 4 9 2 .

  • A ( π‘₯ + 7 ) ( π‘₯ βˆ’ 7 )
  • B ( π‘₯ + 4 9 ) ( π‘₯ βˆ’ 4 9 )
  • C ( 2 π‘₯ + 7 ) 2
  • D ( 2 π‘₯ βˆ’ 7 ) 2
  • E ( π‘₯ βˆ’ 7 ) 2

Q3:

Factor π‘Ž βˆ’ 6 π‘Ž 𝑏 + 9 𝑏   .

  • A ( π‘Ž βˆ’ 3 𝑏 ) 
  • B ( π‘Ž + 𝑏 ) ( π‘Ž + 3 𝑏 )
  • C ( π‘Ž + 3 𝑏 ) 
  • D ( 2 π‘Ž βˆ’ 𝑏 ) ( π‘Ž βˆ’ 2 𝑏 )
  • E ( π‘Ž + 𝑏 ) ( π‘Ž + 2 𝑏 )

Q4:

Factor π‘₯ + 6 π‘₯ + 9 2 .

  • A ( π‘₯ + 3 ) 2
  • B ( π‘₯ + 1 ) ( π‘₯ + 9 )
  • C ( π‘₯ + 2 ) 2
  • D ( π‘₯ βˆ’ 1 ) ( π‘₯ βˆ’ 9 )
  • E ( π‘₯ + 3 ) ( 3 π‘₯ + 2 )

Q5:

Determine which of the following expressions is equivalent to 𝑝 βˆ’ π‘ž 𝑝 + π‘ž 2 2 .

  • A 𝑝 βˆ’ π‘ž
  • B 2 𝑝 + 2 π‘ž
  • C 𝑝 + π‘ž
  • D 𝑝 + 2 π‘ž
  • E 𝑝 βˆ’ 2 π‘ž

Q6:

An identity is an equation that is true for all values of its variables.

For example, 2 ( π‘Ž + 𝑏 ) = 2 π‘Ž + 2 𝑏 is an identity because it will be true for all values of π‘Ž and 𝑏 .

Expand and simplify ο€Ή π‘₯ βˆ’ 𝑦  + ( 2 π‘₯ 𝑦 ) 2 2 2 2 .

  • A π‘₯ + 2 π‘₯ 𝑦 + 𝑦 4 2 2 4
  • B π‘₯ βˆ’ 𝑦 4 4
  • C π‘₯ + 4 π‘₯ 𝑦 + 𝑦 4 2 2 4
  • D π‘₯ + 𝑦 4 4
  • E π‘₯ + 2 π‘₯ 𝑦 βˆ’ 𝑦 4 2 2 4

Factor π‘₯ + 2 π‘₯ 𝑦 + 𝑦 4 2 2 4 .

  • A ο€Ή π‘₯ + 𝑦  2 2 2
  • B ο€Ή π‘₯ βˆ’ 𝑦  βˆ’ 2 π‘₯ 𝑦 2 2 2 2 2
  • C ο€Ή π‘₯ βˆ’ 𝑦  2 2 2
  • D ο€Ή π‘₯ + 𝑦  + 2 π‘₯ 𝑦 2 2 2 2 2
  • E ο€Ή π‘₯ βˆ’ 𝑦  + 2 π‘₯ 𝑦 2 2 2 2 2

Is the equation ο€Ή π‘₯ + 𝑦  = ο€Ή π‘₯ βˆ’ 𝑦  + ( 2 π‘₯ 𝑦 ) 2 2 2 2 2 2 2 an identity?

  • Ano
  • Byes

Substitute π‘₯ = 3 and 𝑦 = 2 into the identity ( π‘₯ + 𝑦 ) = ( π‘₯ βˆ’ 𝑦 ) + ( 2 π‘₯ 𝑦 ) 2 2 2 2 2 2 2 to generate a Pythagorean triple.

  • A 1 3 = 5 + 1 2 2 2 2
  • B 1 3 = 1 2 βˆ’ 5 2 2 2
  • C 5 = ( 6 βˆ’ 1 ) 2 2
  • D 1 3 = ( 5 + 1 2 ) 2 2
  • E 5 = 3 + 4 2 2 2

Q7:

Answer the following questions for the brackets ( π‘₯ βˆ’ 𝑦 ) ( π‘₯ + 𝑦 ) .

Expand the brackets ( π‘₯ βˆ’ 𝑦 ) ( π‘₯ + 𝑦 ) .

  • A π‘₯ βˆ’ 𝑦 2 2
  • B 𝑦 βˆ’ π‘₯ 2 2
  • C π‘₯ + 𝑦 2 2
  • D π‘₯ βˆ’ 2 π‘₯ 𝑦 + 𝑦 2 2
  • E π‘₯ + 2 π‘₯ 𝑦 + 𝑦 2 2

Is the identity ( π‘₯ βˆ’ 𝑦 ) ( π‘₯ + 𝑦 ) = π‘₯ βˆ’ 𝑦 2 2 true?

  • Ano
  • Byes

Q8:

Is the equation π‘₯ + 𝑦 π‘₯ + 𝑦 = π‘₯ + 𝑦 2 2 an identity?

  • A Yes
  • B No

Q9:

Is the equation π‘₯ + 𝑦 π‘₯ + 𝑦 = π‘₯ + 𝑦     an identity?

  • A Yes
  • B No

Q10:

Is the equation π‘₯ + 8 π‘₯ + 1 3 = ( π‘₯ + 8 ) βˆ’ 8 π‘₯ βˆ’ 5 1 2 2 an identity?

  • A No
  • B Yes

Q11:

Factor the expression 4 π‘Ž βˆ’ 9 𝑏 2 2 .

  • A ( 2 π‘Ž + 3 𝑏 ) ( 2 π‘Ž βˆ’ 3 𝑏 )
  • B ( 4 π‘Ž βˆ’ 3 𝑏 ) ( π‘Ž βˆ’ 3 𝑏 )
  • C ( 2 π‘Ž + 3 𝑏 ) ( 2 π‘Ž + 3 𝑏 )
  • D ( π‘Ž + 3 𝑏 ) ( 4 π‘Ž βˆ’ 3 𝑏 )
  • E ( 2 π‘Ž βˆ’ 3 𝑏 ) ( 2 π‘Ž βˆ’ 3 𝑏 )

Q12:

Factorise fully π‘Ž 𝑏 βˆ’ ( π‘Ž 𝑏 βˆ’ 5 ) 2 2 2 .

  • A 5 ( 2 π‘Ž 𝑏 βˆ’ 5 )
  • B ( π‘Ž 𝑏 + 5 ) 2
  • C βˆ’ 5 ( 2 π‘Ž 𝑏 βˆ’ 5 )
  • D βˆ’ 5 ( π‘Ž 𝑏 + 5 )
  • E 5 ( π‘Ž 𝑏 βˆ’ 5 )

Q13:

Factorise fully 𝑏 ( π‘Ž + 8 𝑏 ) βˆ’ 𝑏 ( π‘Ž + 8 𝑏 ) 3 3 .

  • A 𝑏 ( π‘Ž + 8 𝑏 ) ( π‘Ž + 7 𝑏 ) ( π‘Ž + 9 𝑏 )
  • B 𝑏 ( π‘Ž + 8 𝑏 ) ( π‘Ž + 9 𝑏 ) 2
  • C 𝑏 ( π‘Ž + 8 𝑏 ) ( π‘Ž + 7 𝑏 ) ( π‘Ž + 9 𝑏 ) 2
  • D 𝑏 ( π‘Ž + 7 𝑏 ) ( π‘Ž + 9 𝑏 ) 2
  • E 𝑏 ( π‘Ž + 8 𝑏 ) ( π‘Ž + 7 𝑏 ) 2

Q14:

Factorise fully ( 5 π‘Ž βˆ’ 3 ) βˆ’ 3 6 2 .

  • A ( 5 π‘Ž + 3 ) ( 5 π‘Ž βˆ’ 9 )
  • B ( 5 π‘Ž + 3 ) 2
  • C 5 ( π‘Ž + 3 ) ( π‘Ž βˆ’ 6 )
  • D ( 5 π‘Ž βˆ’ 9 ) 2
  • E ( 5 π‘Ž + 3 ) ( π‘Ž βˆ’ 9 )

Q15:

Expand and simplify ( 2 π‘₯ βˆ’ 3 𝑦 ) ο€Ή 5 π‘₯ βˆ’ 5 π‘₯ 𝑦 βˆ’ 𝑦  2 2 .

  • A 1 0 π‘₯ βˆ’ 2 5 π‘₯ 𝑦 + 1 3 π‘₯ 𝑦 + 3 𝑦 3 2 2 3
  • B 1 0 π‘₯ βˆ’ 2 5 π‘₯ 𝑦 βˆ’ 5 π‘₯ 𝑦 βˆ’ 3 𝑦 3 2 2 3
  • C 1 0 π‘₯ βˆ’ 1 0 π‘₯ 𝑦 + 1 3 π‘₯ 𝑦 βˆ’ 1 5 π‘₯ 𝑦 + 3 𝑦 3 2 2 2
  • D 1 0 π‘₯ βˆ’ 1 5 π‘₯ 𝑦 βˆ’ 1 0 π‘₯ βˆ’ 2 π‘₯ 𝑦 + 1 5 π‘₯ 𝑦 + 3 𝑦 3 2 2 2 3

Q16:

Write two equivalent expressions for the area of the following figure.

  • A 1 0 ( π‘₯ + 8 ) , 1 0 π‘₯ + 8 0
  • B 2 0 ( π‘₯ + 8 ) , 2 0 π‘₯ + 2 8
  • C 1 0 ( π‘₯ + 8 ) , 1 0 π‘₯ + 1 8
  • D 2 0 ( π‘₯ + 8 ) , 2 0 π‘₯ + 1 6 0
  • E 1 0 ( π‘₯ + 8 ) , π‘₯ + 8 0

Q17:

Express the following using symbols: The product of 4 and 16 plus 11.

  • A 4 Γ— 1 6 + 1 1
  • B 4 Γ— 1 1 + 1 6
  • C 4 Γ— 1 6 βˆ’ 1 1
  • D 4 βˆ’ 1 6 Γ— 1 1
  • E 4 + 1 6 Γ— 1 1
Preview