Lesson: Limits by Direct Substitution

In this lesson, we will learn how to use the direct substitution method to evaluate limits.

Explainer

  • +1

Sample Question Videos

  • 02:39
  • 04:59
  • 04:56

Worksheet: Limits by Direct Substitution • 23 Questions • 3 Videos

Q1:

Determine l i m 𝑥 5 2 ( 9 𝑥 6 𝑥 9 ) .

Q2:

Determine l i m 𝑥 9 2 4 𝑥 9 𝑥 + 1 .

Q3:

Find l i m 𝑥 1 ( 3 0 ) .

Q4:

Determine l i m s i n 𝑥 𝜋 4 9 𝑥 5 𝑥 .

Q5:

Given 𝑓 ( 𝑥 ) = | 𝑥 + 1 1 | | 𝑥 1 8 | , find l i m 𝑥 4 𝑓 ( 𝑥 ) .

Q6:

Find an exact expression for l i m 𝑥 𝑥 + 2 𝑥 + 7 𝑥 + 1 using the limit laws.

Q7:

Find l i m 𝑥 8 7 𝑥 + 7 3 𝑥 3 .

Q8:

Find .

Q9:

Find l i m c o s 𝑥 1 2 2 𝑥 ( 2 4 𝑥 ) 𝑥 + 𝑥 .

Q10:

Find l i m t a n s i n c o s 𝑥 0 7 3 ( 3 𝑥 ) 7 ( 5 𝑥 ) + 5 ( 6 𝑥 ) .

Q11:

Find l i m 𝑥 1 1 2 2 𝑥 + 1 0 𝑥 1 1 𝑥 + 1 1 𝑥 .

Q12:

Given that l i m 𝑥 6 6 𝑓 ( 𝑥 ) + 4 𝑥 + 1 = 4 , find l i m 𝑥 6 𝑓 ( 𝑥 ) .

Q13:

Find l i m 𝑥 5 7 1 ( 𝑥 5 ) .

Q14:

Determine the following infinite limit: l i m 𝑥 8 8 9 𝑥 ( 𝑥 8 ) .

Q15:

Find l i m 𝑥 4 𝑥 3 𝑥 + 2 𝑥 4 .

Q16:

If the function 𝑓 ( 𝑥 ) = | 𝑥 + 9 | | 𝑥 1 2 | , find l i m 𝑥 1 2 𝑓 ( 𝑥 ) .

Q17:

If the function 𝑓 ( 𝑥 ) = | 𝑥 + 1 | | 𝑥 5 | , find l i m 𝑥 1 𝑓 ( 𝑥 ) .

Q18:

Find l i m 𝑥 4 3 2 𝑥 𝑥 + 2 𝑥 + 7 𝑥 + 1 to 4 decimal places by considering 𝑓 ( 𝑥 ) 𝑛 at 𝑥 = 4 . 1 , 𝑥 = 4 . 0 1 , 𝑥 = 4 . 0 0 1 , 1 2 3 . What is the first 𝑛 that you can use?

Q19:

Determine l i m 𝑥 4 2 2 𝑥 9 𝑥 + 2 8 𝑥 3 𝑥 9 .

Q20:

Given that l i m 𝑥 3 2 𝑓 ( 𝑥 ) 4 𝑥 = 4 , determine l i m 𝑥 3 𝑓 ( 𝑥 ) 𝑥 .

Q21:

Determine l i m c o s 𝑥 𝜋 3 7 𝑥 𝑥 .

Q22:

Find l i m t a n s i n c o s 𝑥 0 1 5 𝑥 5 𝑥 5 𝑥 .

Q23:

Find l i m c o s 𝑥 0 6 3 𝑥 5 𝑥 .

Preview

Nagwa uses cookies to ensure you get the best experience on our website. Learn more about our Privacy Policy.