Lesson Explainer: Simplifying Exponential Expressions with Rational Exponents Mathematics

In this explainer, we will learn how to perform operations and simplifications with expressions that involve rational exponents.

Exponents have many real-world applicationsโ€”for example, in scientific scales such as the pH or Richter scale, in physics with the inverse square law of electromagnetism, gravity, or the half-life of radioactive material, in engineering when taking measurements and calculating multidimensional quantities, in computing when describing the capacity of memory such as RAM or ROM, in finance with compound interest, or in biology when describing the growth or spread of bacteria or viruses, to name a few.

A rational exponent is one where the exponent is a rational number (i.e., an integer or the quotient of two integers).

Letโ€™s first recall exponents for integer powers. For positive integers, we have the following definition.

Definition: Positive Integer Exponents

The general form of a base ๐‘Ž raised to the power of ๐‘›, where ๐‘› is a positive integer, is given by ๐‘Ž=๐‘Žร—๐‘Žร—โ‹ฏร—๐‘Ž๏‡Œ๏†ฒ๏†ฒ๏†ฒ๏‡๏†ฒ๏†ฒ๏†ฒ๏‡Ž,๏Š๏Štimes where there are ๐‘› factors of the base ๐‘Ž (i.e., ๐‘Ž is multiplied by itself repeatedly and it appears in the product ๐‘› times).

For example, 3=3ร—3๏Šจ is the square of the number 3 and 3=3ร—3ร—3๏Šฉ is the cube of the number ๐‘Ž, and so on.

For negative integer powers, we just take the reciprocal of the positive exponent.

Definition: Negative Integer Exponents

The general form of a base ๐‘Ž raised to the power of โˆ’๐‘›, where ๐‘› is a positive integer, is given by ๐‘Ž=1๐‘Ž.๏Šฑ๏Š๏Š

For example, 7=17=149๏Šฑ๏Šจ๏Šจ.

Recall that, to find the product of two powers that have the same base, we have the product rule for exponents, ๐‘Žร—๐‘Ž=๐‘Ž.๏Š๏‰๏Š๏Šฐ๏‰

In other words, if the bases are the same when we multiply, we can add the exponents. For example, 4ร—4=4=4๏Šจ๏Šฉ๏Šจ๏Šฐ๏Šฉ๏Šซ, which is expected from the definition as 4 appears in the product twice for 4๏Šจ and thrice for 4๏Šฉ, making a total of 5 times in the product. We also have a rule for the product of two different bases ๐‘Ž and ๐‘ raised to the same power, in particular ๐‘Žร—๐‘=(๐‘Žร—๐‘).๏Š๏Š๏Š

In other words, if the exponents are the same then we can multiply the bases first and then evaluate the exponent of the result. For example, 2ร—3=(2ร—3)=6=36๏Šจ๏Šจ๏Šจ๏Šจ, which is expected since 2ร—3=4ร—9=36๏Šจ๏Šจ. Another way of thinking about this is that exponentiation distributes over multiplication for integer exponents.

We also have a rule where we can raise ๐‘Ž๏Š to another power ๐‘š as (๐‘Ž)=๐‘Ž.๏Š๏‰๏Šร—๏‰

In other words, raising a number with base ๐‘Ž and exponent ๐‘› to another exponent ๐‘š is the same as raising ๐‘Ž to ๐‘›ร—๐‘š. For example, ๏€น5๏…=5=15625๏Šจ๏Šฉ๏Šฌ, which is expected since ๏€น5๏…=25=15625๏Šจ๏Šฉ๏Šฉ.

The same rules, such as the product of a base with different exponents or the product of two different bases with the same exponent, apply for negative exponents. This is because we have a positive exponent in the reciprocal.

We can see this directly by the definition. For example, if we have the same base ๐‘Ž with different negative exponents โˆ’๐‘› and โˆ’๐‘š, where ๐‘› and ๐‘š are positive, we can write this as ๐‘Žร—๐‘Ž=1๐‘Žร—1๐‘Ž=1๐‘Žร—๐‘Ž=1๐‘Ž=๐‘Ž=๐‘Ž.๏Šฑ๏Š๏Šฑ๏‰๏Š๏‰๏Š๏‰๏Š๏Šฐ๏‰๏Šฑ(๏Š๏Šฐ๏‰)๏Šฑ๏Š๏Šฑ๏‰

Similarly, if we divide two different powers of the same base ๐‘Ž, we have ๐‘Ž๐‘Ž=๐‘Ž๐‘Ž=๐‘Ž.๏Š๏‰๏Š๏Šฑ๏‰๏Š๏Šฑ๏‰

For example, 55=5=5=25๏Šซ๏Šฉ๏Šซ๏Šฑ๏Šฉ๏Šจ. We also note that, for zero exponents and for any nonzero base ๐‘Ž, we have ๐‘Ž=1๏Šฆ. We can see this directly from the rules above by taking the product of ๐‘Ž raised to ๐‘› and โˆ’๐‘›: ๐‘Žร—๐‘Ž=๐‘Ž=๐‘Ž.๏Š๏Šฑ๏Š๏Š๏Šฑ๏Š๏Šฆ

On the other hand, from the definition of the negative exponent, ๐‘Žร—๐‘Ž=๐‘Žร—1๐‘Ž=๐‘Ž๐‘Ž=1.๏Š๏Šฑ๏Š๏Š๏Š๏Š๏Š

Thus, we have ๐‘Ž=1๏Šฆ for any nonzero base ๐‘Ž, as expected. We can also take the product of two different bases ๐‘Ž and ๐‘ raised to the same negative power: ๐‘Žร—๐‘=1๐‘Žร—1๐‘=1๐‘Žร—๐‘=1(๐‘Žร—๐‘)=(๐‘Žร—๐‘).๏Šฑ๏Š๏Šฑ๏Š๏Š๏Š๏Š๏Š๏Š๏Šฑ๏Š

This also means that when we raise a fraction ๐‘Ž๐‘ to an integer power ๐‘›, we can express this as ๏€ป๐‘Ž๐‘๏‡=๐‘Ž๐‘=๐‘Ž๐‘.๏Š๏Š๏Š๏Š๏Šฑ๏Š

For example, ๏€ผ32๏ˆ=32=94๏Šจ๏Šจ๏Šจ.

When simplifying rational exponents with different bases, it is convenient to try to write each power with the same exponent using (๐‘Ž)=๐‘Ž๏Š๏‰๏Šร—๏‰. For example, 4๏Š can be written as 4=๏€น2๏…=2๏Š๏Šจ๏Š๏Šจ๏Š.

We can also simplify exponents by writing their bases in terms of their prime factorization, if the base is an integer. This allows us to split the expression with like bases and apply the product rule with ๐‘Žร—๐‘Ž=๐‘Ž๏Š๏‰๏Š๏Šฐ๏‰.

Letโ€™s consider an example where we use the laws of exponents with a negative exponent to simplify a rational algebraic expression.

Example 1: Simplifying Rational Algebraic Expressions Using Laws of Exponents with Negative Exponents

Simplify 45ร—(63)ร—3225ร—(21)๏Šง๏Šฎ๏Š๏Šฑ๏Šฏ๏Š๏Šฏ๏Š๏Šฏ๏Š๏Šฑ๏Šฏ๏Š.

Answer

In this example, we will simplify a rational algebraic expression using the following laws of exponents: (๐‘Žร—๐‘)=๐‘Žร—๐‘,๏€ป๐‘Ž๐‘๏‡=๐‘Ž๐‘,๐‘Žร—๐‘Ž=๐‘Ž,(๐‘Ž)=๐‘Ž,๐‘Ž=1๐‘Ž.๏Š๏Š๏Š๏Š๏Š๏Š๏Š๏‰๏Š๏Šฐ๏‰๏Š๏‰๏Šร—๏‰๏Šฑ๏Š๏Š

Since the exponent 9๐‘› appears a lot in the given expression, we will attempt to write each factor in terms of this exponent alone. The factors that appear can be rewritten as 45=๏€น45๏…,(63)=163,(21)=121.๏Šง๏Šฎ๏Š๏Šจ๏Šฏ๏Š๏Šฑ๏Šฏ๏Š๏Šฏ๏Š๏Šฑ๏Šฏ๏Š๏Šฏ๏Š

We can also decompose the bases into their prime factorization: 45=3ร—5,63=3ร—7,225=3ร—5,21=3ร—7.๏Šจ๏Šจ๏Šจ๏Šจ

Therefore, we have 45=๏€น3ร—5๏…=๏€น3๏…ร—5=3ร—5.๏Šจ๏Šจ๏Šจ๏Šจ๏Šจ๏Šจ๏Šช๏Šจ

Thus, using these, we can write the expression as 45ร—(63)ร—3225ร—(21)=๏€น45๏…ร—ร—3225ร—=๏€น45๏…ร—3ร—21225ร—63=๏€พ45ร—3ร—21225ร—63๏Š=๏€พ3ร—5ร—3ร—3ร—73ร—5ร—3ร—7๏Š=๏€พ3ร—5ร—73ร—5ร—7๏Š=๏€น3๏…=3.๏Šง๏Šฎ๏Š๏Šฑ๏Šฏ๏Š๏Šฏ๏Š๏Šฏ๏Š๏Šฑ๏Šฏ๏Š๏Šจ๏Šฏ๏Š๏Šง๏Šฌ๏Šฉ๏Šฏ๏Š๏Šฏ๏Š๏Šง๏Šจ๏Šง๏Šจ๏Šฏ๏Š๏Šฏ๏Š๏Šฏ๏Š๏Šฏ๏Š๏Šฏ๏Š๏Šจ๏Šฏ๏Š๏Šช๏Šจ๏Šจ๏Šจ๏Šจ๏Šฏ๏Š๏Šฌ๏Šจ๏Šช๏Šจ๏Šฏ๏Š๏Šจ๏Šฏ๏Š๏Šง๏Šฎ๏Š๏Žจ๏‘ƒ๏Žจ๏‘ƒ

Letโ€™s consider another example, with slightly different exponents that can be simplified using the laws of exponents.

Example 2: Simplifying Rational Algebraic Expressions Using Laws of Exponents

Simplify 4ร—252ร—50๏Šฉ๏Š๏Šฐ๏Šฉ๏Šง๏Šฑ๏Šฉ๏Š๏Šฏ๏Š๏Šฐ๏Šฉ๏Šง๏Šฑ๏Šฉ๏Š.

Answer

In this example, we will simplify a rational algebraic expression using the following laws of exponents: (๐‘Žร—๐‘)=๐‘Žร—๐‘,๏€ป๐‘Ž๐‘๏‡=๐‘Ž๐‘,๐‘Žร—๐‘Ž=๐‘Ž,(๐‘Ž)=๐‘Ž,๐‘Ž=1๐‘Ž.๏Š๏Š๏Š๏Š๏Š๏Š๏Š๏‰๏Š๏Šฐ๏‰๏Š๏‰๏Šร—๏‰๏Šฑ๏Š๏Š

Since the exponent 3๐‘› appears a lot in the given expression, we will attempt to write each factor in terms of this exponent alone. The factors that appear can be rewritten as 4=4ร—4,25=25ร—25=2525,2=2ร—2=๏€น2๏…ร—2,50=50ร—50=5050.๏Šฉ๏Š๏Šฐ๏Šฉ๏Šฉ๏Š๏Šฉ๏Šง๏Šฑ๏Šฉ๏Š๏Šฑ๏Šฉ๏Š๏Šฉ๏Š๏Šฏ๏Š๏Šฐ๏Šฉ๏Šฏ๏Š๏Šฉ๏Šฉ๏Šฉ๏Š๏Šฉ๏Šง๏Šฑ๏Šฉ๏Š๏Šฑ๏Šฉ๏Š๏Šฉ๏Š

We can also decompose the bases into their prime factorization: 4=2,50=2ร—5,25=5.๏Šจ๏Šจ๏Šจ

Therefore, the expression can be written as 4ร—252ร—50=4ร—4ร—(2)ร—2ร—=4ร—4ร—25ร—50(2)ร—2ร—50ร—25=๏€ผ4ร—502ร—25๏ˆร—๏€ผ42๏ˆร—2550=๏€พ2ร—2ร—52ร—5๏Šร—๏€พ22๏Šร—52ร—5=๏€พ2ร—52ร—5๏Šร—๏€พ22๏Šร—12=1ร—2ร—12=2=4.๏Šฉ๏Š๏Šฐ๏Šฉ๏Šง๏Šฑ๏Šฉ๏Š๏Šฏ๏Š๏Šฐ๏Šฉ๏Šง๏Šฑ๏Šฉ๏Š๏Šฉ๏Š๏Šฉ๏Šจ๏Šซ๏Šจ๏Šซ๏Šฉ๏Šฉ๏Š๏Šฉ๏Šซ๏Šฆ๏Šซ๏Šฆ๏Šฉ๏Š๏Šฉ๏Šฉ๏Š๏Šฉ๏Šฉ๏Š๏Šฉ๏Šฉ๏Š๏Šฉ๏Šฉ๏Š๏Šฉ๏Šจ๏Šจ๏Šฉ๏Šจ๏Šฉ๏Š๏Šจ๏Šฉ๏Šจ๏Šจ๏Šฉ๏Šจ๏Šฉ๏Šจ๏Šฉ๏Š๏Šฌ๏Šฉ๏Šฉ๏Š๏Šฉ๏Šจ๏Žข๏‘ƒ๏Žข๏‘ƒ

So far, everything has been considered for integers. But what if we have fractional exponents? Letโ€™s first recall the ๐‘›th root of a number ๐‘Ž.

An ๐‘›th root of a real number ๐‘Ž, where ๐‘› is a positive integer, is a real number ๐‘Ÿ that when raised to the power of ๐‘›, gives ๐‘Ž: ๐‘Ÿ=๐‘Ž.๏Š

If ๐‘Ž<0 and ๐‘› is an even number, then no such real root exists. Otherwise, we denote the positive root as ๐‘Ÿ=โˆš๐‘Ž๏‘ƒ, for all positive integer values of ๐‘›.

If ๐‘› is even, then we have another real root given by โˆ’๐‘Ÿ, as this number raised to the power of ๐‘› also gives ๐‘Ž: (โˆ’๐‘Ÿ)=(โˆ’1)ร—๐‘Ÿ=๐‘Ÿ=๐‘Ž,๏Š๏Š๏Š๏Š since (โˆ’1)=1๏Š when ๐‘› is even.

Thus, if ๐‘› is even and ๐‘Ž>0, the real roots are ยฑ๐‘Ÿ. If ๐‘› is odd, we always have one unique real root, ๐‘Ÿ.

For example, the square roots of 9 are 3 and โˆ’3 since 3ร—3=โˆ’3ร—โˆ’3=9, but the square root of โˆ’9 does not exist. Also, the cube root of 27 is 3 and the cube root of โˆ’27 is โˆ’3.

Definition: The ๐‘›th Root and 1/๐‘› Exponent

A fractional exponent 1๐‘›, where ๐‘› is an integer, of a number ๐‘Ž can be expressed in terms of an ๐‘›th root of a number as ๐‘Ž=โˆš๐‘Ž.๏Ž ๏‘ƒ๏‘ƒ

For example, 36=โˆš36=6๏Ž ๏Žก.

Letโ€™s consider an example where we use this to simplify an expression.

Example 3: Simplifying an Expression Raised to a Rational Exponent

Simplify โˆ’๏€น64๐‘Ž๐‘๏…๏Šง๏Šจ๏Šง๏Šฎ๏Ž ๏Žฅ, where ๐‘Ž and ๐‘ are positive constants.

Answer

In this example, we will simplify an expression raised to a rational exponent.

We will make use of the law of exponents, which states (๐‘Ž)=๐‘Ž.๏Š๏‰๏Šร—๏‰

First, note that 64=2.๏Šฌ

Therefore, the expression can be written as โˆ’๏€น64๐‘Ž๐‘๏…=โˆ’(64)ร—๏€น๐‘Ž๏…ร—๏€น๐‘๏…=โˆ’๏€น2๏…ร—๏€น๐‘Ž๏…ร—๏€น๐‘๏…=โˆ’2ร—๐‘Žร—๐‘=โˆ’2๐‘Ž๐‘.๏Šง๏Šจ๏Šง๏Šฎ๏Šง๏Šจ๏Šง๏Šฎ๏Šฌ๏Šง๏Šจ๏Šง๏Šฎ๏Šฌร—๏Šง๏Šจร—๏Šง๏Šฎร—๏Šจ๏Šฉ๏Ž ๏Žฅ๏Ž ๏Žฅ๏Ž ๏Žฅ๏Ž ๏Žฅ๏Ž ๏Žฅ๏Ž ๏Žฅ๏Ž ๏Žฅ๏Ž ๏Žฅ๏Ž ๏Žฅ๏Ž ๏Žฅ

Now, letโ€™s consider an example where we simplify an expression raised to a rational exponent.

Example 4: Simplifying an Expression Raised to a Rational Exponent

Expand ๏€พโˆ’๏€ผ๐‘Ž+1๐‘Ž๏ˆ๏Š๏Šฉ๏Šจ๏Šง๏Šฆ๏Ž ๏Žค, where ๐‘Ž is a real constant.

  1. ๐‘Ž+2๐‘Ž+1๐‘Ž๏Šฌ๏Šช
  2. โˆ’๐‘Žโˆ’2๐‘Žโˆ’1๐‘Ž๏Šฌ๏Šช
  3. โˆ’๐‘Žโˆ’1๐‘Ž๏Šฌ๏Šช
  4. ๐‘Ž+1๐‘Ž๏Šฌ๏Šช
  5. ๐‘Žโˆ’2๐‘Ž+1๐‘Ž๏Šฌ๏Šช

Answer

In this example, we will simplify an expression raised to a rational exponent.

We will make use of the power law, (๐‘Ž)=๐‘Ž,๏Š๏‰๏Šร—๏‰ and the fact that 1=1๏Œ for any rational exponent ๐‘.

Therefore, the expression can be written as ๏€พโˆ’๏€ผ๐‘Ž+1๐‘Ž๏ˆ๏Š=(โˆ’1)๏€พ๏€ผ๐‘Ž+1๐‘Ž๏ˆ๏Š=โˆ’๏€ผ๐‘Ž+1๐‘Ž๏ˆ=โˆ’๏€พ๐‘Ž+2๐‘Ž๐‘Ž+1๐‘Ž๏Š=โˆ’๐‘Žโˆ’2๐‘Žโˆ’1๐‘Ž.๏Šฉ๏Šจ๏Šง๏Šฆ๏Šฉ๏Šจ๏Šง๏Šฆ๏Šฉ๏Šจ๏Šจ๏Šฌ๏Šฉ๏Šจ๏Šช๏Šฌ๏Šช๏Ž ๏Žค๏Ž ๏Žค๏Ž ๏Žค

This is option B.

Again, the same rules apply for the exponents that we have established for integers, and we can use these to write a number raised to any rational power. A rational number ๐‘› can be expressed as ๐‘›=๐‘๐‘ž, where ๐‘ and ๐‘ž are integers and ๐‘ž is nonzero.

Definition: Fractional Exponent

A fractional exponent ๐‘๐‘ž, where ๐‘ and ๐‘ž are integers and ๐‘žโ‰ 0, of a number ๐‘Ž can be expressed as ๐‘Ž=๏€บโˆš๐‘Ž๏†=โˆš๐‘Ž,๏‘…๏‘†๏‘†๏‘†๏Œ๏Œ assuming a real root ๏‘†โˆš๐‘Ž exists.

We can see this from the rule (๐‘Ž)=๐‘Ž๏Š๏‰๏Šร—๏‰ and the ๐‘žth root of a number ๐‘Ž (assuming a real root exists) as ๐‘Ž=๏€พ๐‘Ž๏Š=๏€บโˆš๐‘Ž๏†๏‘…๏‘†๏Ž ๏‘†๏‘†๏Œ๏Œ or, equivalently, ๐‘Ž=(๐‘Ž)=๏€ปโˆš๐‘Ž๏‡.๏‘…๏‘†๏Ž ๏‘†๏‘†๏Œ๏Œ

In order to simplify numerical expressions with different bases and rational exponents, it is convenient to write them in terms of their prime factorization, if the base is an integer. This allows us to split the expression with like bases and apply the product rule for exponents with ๐‘Žร—๐‘Ž=๐‘Ž๏Š๏‰๏Š๏Šฐ๏‰.

Letโ€™s consider an example where we have to do this to simplify an expression.

Example 5: Simplifying an Expression Involving Integers Raised to Rational Exponents

Simplify (36)ร—(21)ร—(8)(486)ร—(42)๏Ž ๏Žฃ๏Ž ๏Žค๏Ž ๏Ž ๏ŽŸ๏Šจ๏Šฉ.

Answer

In this example, we will simplify an expression involving integers raised to rational exponents. We will make use of the following laws of exponents: (๐‘Žร—๐‘)=๐‘Žร—๐‘,๏€ป๐‘Ž๐‘๏‡=๐‘Ž๐‘,๐‘Žร—๐‘Ž=๐‘Ž,(๐‘Ž)=๐‘Ž,๐‘Ž=1๐‘Ž.๏Š๏Š๏Š๏Š๏Š๏Š๏Š๏‰๏Š๏Šฐ๏‰๏Š๏‰๏Šร—๏‰๏Šฑ๏Š๏Š

We can also decompose the bases into their prime factorization: 36=3ร—2,21=3ร—7,8=2,486=2ร—3,42=2ร—3ร—7.๏Šจ๏Šจ๏Šฉ๏Šซ

Applying the appropriate power to each of these bases, we have (36)=๏€น3ร—2๏…=๏€น3๏…ร—๏€น2๏…=3ร—2,(21)=(3ร—7)=3ร—7,(8)=๏€น2๏…=2,(486)=๏€น2ร—3๏…=2ร—๏€น3๏…=2ร—3,(42)=(2ร—3ร—7)=2ร—3ร—7.๏Ž ๏Žฃ๏Ž ๏Žฃ๏Ž ๏Žฃ๏Ž ๏Žฃ๏Ž ๏Žก๏Ž ๏Žก๏Ž ๏Žค๏Ž ๏Žค๏Žข๏Žค๏Ž ๏Ž ๏ŽŸ๏Ž ๏Ž ๏ŽŸ๏Ž ๏Ž ๏ŽŸ๏Ž ๏Ž ๏ŽŸ๏Ž ๏Ž ๏ŽŸ๏Ž ๏Žก๏Šจ๏Šจ๏Šจ๏Šจ๏Šจ๏Šจ๏Šจ๏Šจ๏Šฉ๏Šซ๏Šซ๏Šฉ๏Šฉ๏Šฉ๏Šฉ๏Šฉ

Thus, using these, the given expression can be written as (36)ร—(21)ร—(8)(486)ร—(42)=3ร—2ร—3ร—7ร—22ร—3ร—2ร—3ร—7=๏2ร—22ร—2๏ร—๏3ร—33ร—3๏ร—๏€พ77๏Š=2ร—3ร—7=2ร—3ร—7=12ร—13ร—17=184.๏Ž ๏Žฃ๏Ž ๏Žค๏Ž ๏Ž ๏ŽŸ๏Ž ๏Žก๏Ž ๏Žก๏Žข๏Žค๏Ž ๏Ž ๏ŽŸ๏Ž ๏Žก๏Ž ๏Žก๏Žข๏Žค๏Ž ๏Ž ๏ŽŸ๏Ž ๏Žก๏Ž ๏Žก๏Ž ๏Žก๏Žข๏Žค๏Ž ๏Ž ๏ŽŸ๏Ž ๏Žก๏Ž ๏Žก๏Šจ๏Šฉ๏Šจ๏Šจ๏Šฉ๏Šฉ๏Šฉ๏Šฉ๏Šจ๏Šฉ๏Šจ๏Šฉ๏Šฐ๏Šฑ๏Šฑ๏Šฉ๏Šฐ๏Šจ๏Šฑ๏Šฑ๏Šฉ๏Šจ๏Šฑ๏Šฉ๏Šฑ๏Šจ๏Šฑ๏Šง๏Šฑ๏Šง๏Šจ

If the base is a decimal or fraction, then we should write the base as a fraction and then decompose the numerator and denominator into their prime factors. Now, letโ€™s look at a few examples of this.

Example 6: Simplifying a Numerical Expression Raised to Rational Exponents

Simplify (0.25)(1.8)8๏Žข๏Žก๏Žก๏Žข๏Šจ.

Answer

In this example, we will simplify a numerical expression raised to rational exponents. We will make use of the following laws of exponents: (๐‘Žร—๐‘)=๐‘Žร—๐‘,๏€ป๐‘Ž๐‘๏‡=๐‘Ž๐‘,๐‘Žร—๐‘Ž=๐‘Ž,(๐‘Ž)=๐‘Ž,๐‘Ž=1๐‘Ž.๏Š๏Š๏Š๏Š๏Š๏Š๏Š๏‰๏Š๏Šฐ๏‰๏Š๏‰๏Šร—๏‰๏Šฑ๏Š๏Š

Letโ€™s first write each base as a fraction and express the denominator and numerator in terms of their prime factorization: 0.25=14=12,1.8=95=35,8=2.๏Šจ๏Šจ๏Šฉ

Applying the appropriate power to each of these bases, we have (0.25)=๏€ผ12๏ˆ=1(2)=12,(1.8)=๏€พ35๏Š=(3)5=35,8=๏€น2๏…=2.๏Žข๏Žก๏Žข๏Žก๏Žข๏Žก๏Žก๏Žข๏Žก๏Žข๏Šจ๏Šจ๏Šฉ๏Šจ๏Šจ๏Šจ๏Šจ๏Šจ๏Šจ๏Šช๏Šจ๏Šฉ๏Šจ

Thus, using these, the expression can be written as (0.25)(1.8)8=ร—2=32ร—2ร—5=32ร—5=81800.๏Žข๏Žก๏Žก๏Žข๏Žข๏Žฃ๏Žก๏Šจ๏Šง๏Šจ๏Šฉ๏Šซ๏Šจ๏Šช๏Šฉ๏Šจ๏Šจ๏Šช๏Šซ๏Šจ

Example 7: Simplifying a Numerical Expression Raised to Rational Exponents

Simplify (0.8)ร—(36)ร—5(30)ร—(1.25)๏Ž ๏Žฃ๏Ž ๏Žง๏Žข๏Žฃ๏Žช๏Žฆ๏Žฃ๏Ž ๏Žฃ.

Answer

In this example, we will simplify a numerical expression raised to rational exponents. We will make use of the following laws of exponents: (๐‘Žร—๐‘)=๐‘Žร—๐‘,๏€ป๐‘Ž๐‘๏‡=๐‘Ž๐‘,๐‘Žร—๐‘Ž=๐‘Ž,(๐‘Ž)=๐‘Ž,๐‘Ž=1๐‘Ž.๏Š๏Š๏Š๏Š๏Š๏Š๏Š๏‰๏Š๏Šฐ๏‰๏Š๏‰๏Šร—๏‰๏Šฑ๏Š๏Š

Letโ€™s first write each base as a fraction and then express the denominator and numerator in terms of their prime factorization: 0.8=45=25,36=3ร—2,30=2ร—3ร—5,1.25=54=52.๏Šจ๏Šจ๏Šจ๏Šจ

Applying the appropriate power to each of these bases, we have (0.8)=๏€พ25๏Š=๏€น2๏…5=25,(36)=๏€น3ร—2๏…=๏€น3๏…ร—๏€น2๏…=3ร—2,(30)=(2ร—3ร—5)=2ร—3ร—5,(1.25)=๏€ผ52๏ˆ=5(2)=52.๏Ž ๏Žฃ๏Ž ๏Žฃ๏Ž ๏Žฃ๏Ž ๏Žฃ๏Ž ๏Žก๏Ž ๏Žฃ๏Ž ๏Žง๏Ž ๏Žง๏Ž ๏Žง๏Ž ๏Žง๏Ž ๏Žฃ๏Ž ๏Žฃ๏Žช๏Žฆ๏Žฃ๏Žช๏Žฆ๏Žฃ๏Žช๏Žฆ๏Žฃ๏Žช๏Žฆ๏Žฃ๏Žช๏Žฆ๏Žฃ๏Ž ๏Žฃ๏Ž ๏Žฃ๏Ž ๏Žฃ๏Ž ๏Žฃ๏Ž ๏Žฃ๏Ž ๏Žก๏Šจ๏Šจ๏Šจ๏Šจ๏Šจ๏Šจ๏Šจ๏Šจ

Thus, using this, the expression can be written as (0.8)ร—(36)ร—5(30)ร—(1.25)=ร—3ร—2ร—52ร—3ร—5ร—=2ร—3ร—2ร—5ร—22ร—3ร—5ร—5ร—5=๏2ร—2ร—22๏ร—๏33๏ร—๏55ร—5ร—5๏=2ร—3ร—5=2ร—3ร—5=8ร—9ร—25=1800.๏Ž ๏Žฃ๏Ž ๏Žง๏Žข๏Žฃ๏Žช๏Žฆ๏Žฃ๏Ž ๏Žฃ๏Ž ๏Žก๏Ž ๏Žฃ๏Ž ๏Žฃ๏Ž ๏Žฃ๏Žข๏Žฃ๏Žช๏Žฆ๏Žฃ๏Žช๏Žฆ๏Žฃ๏Žช๏Žฆ๏Žฃ๏Ž ๏Žฃ๏Ž ๏Žก๏Ž ๏Žก๏Ž ๏Žฃ๏Ž ๏Žฃ๏Žข๏Žฃ๏Ž ๏Žก๏Žช๏Žฆ๏Žฃ๏Žช๏Žฆ๏Žฃ๏Žช๏Žฆ๏Žฃ๏Ž ๏Žฃ๏Ž ๏Žฃ๏Ž ๏Žก๏Ž ๏Žฃ๏Ž ๏Žก๏Žช๏Žฆ๏Žฃ๏Ž ๏Žฃ๏Žช๏Žฆ๏Žฃ๏Žข๏Žฃ๏Žช๏Žฆ๏Žฃ๏Ž ๏Žฃ๏Ž ๏Žฃ๏Ž ๏Žก๏Ž ๏Žฃ๏Ž ๏Žก๏Žฆ๏Žฃ๏Ž ๏Žฃ๏Žฆ๏Žฃ๏Žข๏Žฃ๏Žฆ๏Žฃ๏Ž ๏Žฃ๏Ž ๏Žฃ๏Šจ๏Šซ๏Šซ๏Šจ๏Šฐ๏Šฐ๏Šฐ๏Šฐ๏Šฐ๏Šฑ๏Šฑ๏Šฉ๏Šจ๏Šจ

Finally, letโ€™s consider an example where we have to simplify an algebraic expression involving rational and negative exponents.

Example 8: Simplifying Algebraic Expressions Using Laws of Exponents Involving Rational and Negative Exponents

Determine the simplest form of (16)ร—27(144)ร—โˆš81๏Žข๏Žก๏Ž ๏Žข๏Žข๏Žก๏—๏—๏Šฑ๏—.

Answer

In this example, we will simplify an algebraic expression involving rational and negative exponents. We will make use of the laws of exponents (๐‘Žร—๐‘)=๐‘Žร—๐‘,๏€ป๐‘Ž๐‘๏‡=๐‘Ž๐‘,๐‘Žร—๐‘Ž=๐‘Ž,(๐‘Ž)=๐‘Ž,๐‘Ž=1๐‘Ž,๏Š๏Š๏Š๏Š๏Š๏Š๏Š๏‰๏Š๏Šฐ๏‰๏Š๏‰๏Šร—๏‰๏Šฑ๏Š๏Š along with the fact that 1=1๏Œ for any rational number ๐‘. Letโ€™s assume that ๐‘ฅ is a rational number and begin by separating the exponents in each of the factors: (16)=๏€ฝ16๏‰,27=27ร—27,(144)=๏€ฝ144๏‰.๏Žข๏Žก๏Žข๏Žก๏Ž ๏Žข๏Žช๏Ž ๏Žข๏Žข๏Žก๏Žข๏Žก๏—๏—๏—๏Šฑ๏—๏—๏—

The prime factorization of each of the bases is 16=2,27=3,144=2ร—3,9=3.๏Šช๏Šฉ๏Šช๏Šจ๏Šจ

Applying the appropriate powers to the bases, we have 16=๏€น2๏…=2,27=๏€น3๏…=3,144=๏€น2ร—3๏…=๏€น2๏…ร—๏€น3๏…=2ร—3.๏Žข๏Žก๏Žข๏Žก๏Ž ๏Žข๏Ž ๏Žข๏Žข๏Žก๏Žข๏Žก๏Žข๏Žก๏Žข๏Žก๏Šช๏Šฌ๏Šฉ๏Šช๏Šจ๏Šช๏Šจ๏Šฌ๏Šฉ

Thus, the expression can be written as (16)ร—27(144)ร—โˆš81=๏€ฝ16๏‰ร—27ร—27๏€ฝ144๏‰ร—9=๏16ร—27144๏ร—๏€127ร—9๏Œ=๏€พ2ร—32ร—3๏Šร—13ร—3=1ร—13=127.๏Žข๏Žก๏Ž ๏Žข๏Žข๏Žก๏Žข๏Žก๏Žช๏Ž ๏Žข๏Žข๏Žก๏Žข๏Žก๏Žข๏Žก๏Ž ๏Žข๏—๏—๏Šฑ๏—๏—๏—๏—๏—๏Šฌ๏Šฉ๏Šฌ๏Šฉ๏—๏Šจ๏—๏Šฉ

Key Points

  • The laws of exponents for bases ๐‘Ž and ๐‘ and all rational exponents ๐‘› and ๐‘š are as follows:
    Product rules๐‘Žร—๐‘Ž=๐‘Ž๏Š๏‰๏Š๏Šฐ๏‰
    ๐‘Žร—๐‘=(๐‘Žร—๐‘)๏Š๏Š๏Š
    Negative exponent๐‘Ž=1๐‘Ž๏Šฑ๏Š๏Š
    Quotient rules๐‘Ž๐‘Ž=๐‘Ž๏Š๏‰๏Š๏Šฑ๏‰
    ๏€ป๐‘Ž๐‘๏‡=๐‘Ž๐‘๏Š๏Š๏Šฑ๏Š
    Power rules(๐‘Ž)=๐‘Ž๏Š๏‰๏Šร—๏‰
    ๐‘Ž=โˆš๐‘Ž๏‘ƒ๏‘‚๏‘‚๏Š
  • We also have ๐‘Ž=1๏Šฆ for any nonzero number ๐‘Ž and 1=1๏Œ for any rational number ๐‘.
  • When simplifying numerical expressions with different bases or exponents, we should try to rewrite the expression in such a way that we have common bases or exponents. We can do this by using the laws of exponents and by prime factorization of the denominator and numerator of the different bases.

Nagwa uses cookies to ensure you get the best experience on our website. Learn more about our Privacy Policy.