ورقة تدريب الدرس: قابلية الدالة للاشتقاق الرياضيات

في ورقة التدريب هذه، سوف نتدرَّب على تحديد إذا ما كانت دالة قابلة للاشتقاق، وبحث العلاقة بين قابلية الدالة للاشتقاق واتصالها.

س١:

صواب أم خطأ؟ إذا كانت دالةٌ متصلةً عند نقطة، فلا بد أنها قابلة للاشتقاق عند هذه النقطة.

  • أصواب
  • بخطأ

س٢:

افترِض أن: 󰎨(𞸎)=󰃇٦𞸎٤،𞸎١،٣𞸎،𞸎>١.٢ ماذا يُمكِن أن يُقال عن قابلية الدالة 󰎨 للاشتقاق عند 𞸎=١؟

  • أالدالة 󰎨(𞸎) قابلة للاشتقاق عند 𞸎=١؛ حيث ــــــــــ𞸎١𞸎١+󰎨(𞸎)󰎨(𞸎)، ولكنها غير متصلة.
  • بالدالة 󰎨(𞸎) غير قابلة للاشتقاق عند 𞸎=١؛ لأن 󰎨(١) غير مُعرَّفة.
  • جالدالة 󰎨(𞸎) غير قابلة للاشتقاق عند 𞸎=١.
  • دالدالة 󰎨(𞸎) غير قابلة للاشتقاق عند 𞸎=١؛ لأن 󰎨(𞸎) متصلة عند 󰎨(١).
  • هالدالة 󰎨(𞸎) متصلة، ولكنها غير قابلة للاشتقاق عند 𞸎=١؛ لأن 󰎨(١)󰎨(١)+.

س٣:

يوضِّح الشكل التمثيل البياني للدالة 󰎨. ماذا يمكن أن نقول عن قابلية 󰎨 للاشتقاق عند 𞸎=٤؟

  • أالدالة غير قابلة للاشتقاق عند 𞸎=٤؛ لأنها غير معرَّفة عند تلك النقطة.
  • بالدالة قابلة للاشتقاق عند 𞸎=٤؛ لأن معدَّل تغيُّر الدالة هو نفسه على جانبي تلك النقطة.
  • جالدالة غير قابلة للاشتقاق عند 𞸎=٤؛ لأن معدَّل تغيُّر الدالة مختلف على جانبي تلك النقطة.
  • دالدالة قابلة للاشتقاق عند 𞸎=٤؛ لأنها متصلة عند تلك النقطة.

س٤:

انظر الدالة 󰎨(𞸎)=󰋴𞸎٣.

ما مجال 󰎨؟

  • أ𞸎٠
  • ب𞸎<٠
  • ج𞹇
  • د𞸎٠
  • ه𞸎>٠

أوجد مقدارًا يُعبِّر عن مشتقة 󰎨.

  • أ١٣󰋴𞸎٣٢
  • ب١٣󰋴𞸎٣٢
  • ج٣󰋴𞸎٣٢
  • د١󰋴𞸎٣٢
  • ه٣󰋴𞸎٣٢

ما مجال المشتقة 󰎨؟

  • أ𞸎٠
  • ب𞸎>٠
  • ج𞹇{٠}
  • د𞸎٠
  • ه𞹇

س٥:

فيما يلي تمثيل بياني يوضح 󰎨. أي النقاط تكون عندها مشتقة الدالة غير معرفة؟

  • أ𞸎=١، 𞸎=١، 𞸎=٠
  • ب𞸎=١، 𞸎=١
  • ج𞸎=١
  • د𞸎=١
  • ه𞸎=٠

س٦:

افترض أن: 󰎨(𞸎)=١+٣𞸎،𞸎١،𞸎+٣،𞸎>١.٣ماذا يمكن أن يُقال عن قابلية الدالة 󰎨 للاشتقاق عند 𞸎=١؟

  • أالدالة 󰎨(𞸎) متصلة ولكن غير قابلة للاشتقاق عند 𞸎=١؛ لأن 󰎨(١)󰎨(١)+.
  • بالدالة 󰎨(𞸎) غير قابلة للاشتقاق عند 𞸎=١؛ لأن󰎨(𞸎) غير متصلة عند 󰎨(١).
  • جالدالة 󰎨(𞸎) مشتقة عند 𞸎=١.
  • دالدالة 󰎨(𞸎) مشتقة عند 𞸎=١ عند ــــــــــ𞸎١𞸎١+󰎨(𞸎)󰎨(𞸎) ولكن ليست متصلة.
  • هالدالة 󰎨(𞸎) غير قابلة للاشتقاق عند𞸎=١؛ لأن󰎨(١) غير معرفة.

س٧:

انظر الدالة 󰎨(٨)=٣، 󰎨(٨)=٧. ما قيمة ـــــ𞸎٨󰎨(𞸎)؟

س٨:

إذا كانت: 󰎨(𞸎)=󰃇٨𞸎٨،𞸎<٢،󰏡𞸎،𞸎٢.٣ دالة متصلة، فأوجد قيمة 󰏡. ماذا يمكن أن يقال عن اشتقاق الدالة 󰎨 عندما تكون 𞸎=٢؟

  • أ󰏡=٣، 󰎨 قابلة للاشتقاق عند 𞸎=٢.
  • ب󰏡=٣، 󰎨 قابلة للاشتقاق عند 𞸎=٢.
  • ج󰏡=٣، 󰎨 غير قابلة للاشتقاق عند 𞸎=٢.
  • د󰏡=٣، 󰎨 غير قابلة للاشتقاق عند 𞸎=٢.

س٩:

أوجد قيمة كلٍّ من 󰏡، 𞸁، وابحث قابلية اشتقاق الدالة 󰎨 عند 𞸎=١ إذا كانت 󰎨 متصلة، وكانت:󰎨(𞸎)=٩𞸎+󰏡𞸎+٤𞸎<١،١١𞸎=١،󰏡+𞸁𞸎𞸎>١.٢إذانإذانإذان

  • أ󰏡=٢، 𞸁=٩، 󰎨(𞸎) غير قابلة للاشتقاق عند 𞸎=١.
  • ب󰏡=٢، 𞸁=٩، 󰎨(𞸎) غير قابلة للاشتقاق عند 𞸎=١.
  • ج󰏡=٢، 𞸁=٩، 󰎨(𞸎) قابلة للاشتقاق عند 𞸎=١.
  • د󰏡=٢، 𞸁=٩، 󰎨(𞸎) قابلة للاشتقاق عند 𞸎=١.
  • ه󰏡=٨، 𞸁=٤، 󰎨(𞸎) غير قابلة للاشتقاق عند 𞸎=١.

س١٠:

هل الدالة: 󰎨(𞸎)=𞸎󰃁١𞸎󰃀،𞸎٠،٠،𞸎=٠ قابلة للاشتقاق عند 𞸎=٠؟

  • أنعم
  • بلا

يتضمن هذا الدرس 80 من الأسئلة الإضافية و592 من الأسئلة الإضافية المتشابهة للمشتركين.

تستخدم نجوى ملفات تعريف الارتباط لضمان حصولك على أفضل تجربة على موقعنا. معرفة المزيد حول سياسة الخصوصية لدينا.