تستخدم نجوى ملفات تعريف الارتباط لضمان حصولك على أفضل تجربة على موقعنا. معرفة المزيد حول سياسة الخصوصية لدينا.

فيديو: كتابة المعادلات الخطية

نهال عصمت

يوضح الفيديو طريقة كتابة المعادلات الخطية بصيغة الميل والمقطع، وصيغة الميل ونقطة، وطريقة كتابة معادلة المستقيم المار بنقطتين.

٠٩:٣٤

‏نسخة الفيديو النصية

كتابة المعادلات الخطية.

هنتكلّم عن طريقة كتابة المعادلات الخطية، بصيغة الميل والمقطع، وصيغة الميل ونقطة. وإزّاي نعرف نكتب معادلة المستقيم المارّ بنقطتين. أول حاجة هنتكلّم عنها، هي كتابة المعادلة الخطية بصيغة الميل والمقطع. بمعنى لو عندنا مستقيم بالشكل الآتي. عايزين نكتب معادلة المستقيم، اللي مرسوم قدامنا، بصيغة الميل والمقطع.

أول حاجة، هنبدأ نحسب الميل. الميل بيساوي فرق الصادات على فرق السينات. يبقى نقدر نقول إن م هتساوي ص اتنين ناقص ص واحد، على س اتنين ناقص س واحد. وبالتالي م هتساوي … هنعوّض بالنقطتين الموجودين على الرسم. هيبقى عندنا ص ناقص ب، على س ناقص صفر. هنعتبر إن م مقامها واحد. عندنا حاصل ضرب الطرفين، يساوي حاصل ضرب الوسطين. وبالتالي نقدر نقول إن م س هتساوي ص ناقص ب.

هنجمع ب على طرفَي المعادلة. هنلاقي إن ص هتساوي م س زائد ب. هي دي معادلة المستقيم بصيغة الميل والمقطع. م هي الميل. أمّا ب فهو المقطع الصادي، أو الجزء المقطوع من محور الصادات. يبقى كده قدرنا نستنتج معادلة المستقيم اللي مرسوم قدامنا، ونكتبها بصيغة الميل والمقطع. وهي: ص تساوي م س زائد ب. بعد كده هنجيب صفحة جديدة، ونشوف مثال إزّاي نكتب معادلة المستقيم، باستخدام صيغة الميل والمقطع.

معطى التمثيل البياني الآتي. والمطلوب كتابة معادلة المستقيم بصيغة الميل والمقطع. أول حاجة، هنبدأ نحدّد نقطتين على المستقيم. هتبقى دي أول نقطة، وإحداثي النقطة هو: صفر وسالب اتنين. ودي النقطة التانية، وإحداثي النقطة هو: سالب أربعة وصفر. بعد كده هنبدأ نكتب صيغة الميل والمقطع. وهي: ص تساوي م س زائد ب. عايزين نوجد قيمة كلٍّ من م وَ ب؛ عشان نقدر نكتب معادلة المستقيم بصيغة الميل والمقطع.

أول حاجة، هنبدأ نحسب الميل. الميل بيساوي فرق الصادات على فرق السينات. يبقى م هتساوي ص اتنين ناقص واحد، على س اتنين ناقص س واحد. وبالتالي م هتساوي سالب اتنين ناقص سالب واحد، على صفر ناقص سالب أربعة. يبقى م هتساوي؛ في البسط سالب واحد، وفي المقام أربعة. يبقى نقدر نقول إن الميل هيساوي سالب واحد على أربعة.

يبقى بعد ما جِبنا قيمة م، اللي هي الميل، عايزين نوجد قيمة ب. ب هي المقطع الصادي. يعني النقطة اللي بيقطع فيها المستقيم، محور الصادات. هنلاقي إن المستقيم يقطع محور الصادات، في النقطة صفر وسالب اتنين. وبالتالي نقدر نقول إن المقطع الصادي، اللي هو ب، هيساوي سالب اتنين.

هنبدأ نعوّض في المعادلة الخطية، بصيغة الميل والمقطع. هيبقى عندنا ص تساوي … م اللي هي سالب واحد على أربعة. بعد كده س تنزل زيّ ما هي. بعد كده عندنا زائد ب، هنكتب بدلها ناقص اتنين. يبقى كده عرفنا نكتب معادلة المستقيم، بصيغة الميل والمقطع.

فيه معلومة لازم نعرفها، وهو إن معادلة الخط الرأسي، لا يمكن كتابتها بصيغة الميل والمقطع. لأن في الحالة دي، اللي هي حالة الخط الرأسي، بيكون الميل غير معرَّف. عشان كده ما بنعرفش نكتبها بصيغة الميل والمقطع. هنبدأ نجيب صفحة جديدة. وهنتكلّم عن تاني صيغة، وهي صيغة الميل ونقطة.

يبقى ممكن نكتب المعادلة الخطية، بصيغة الميل ونقطة. وهي: ص ناقص ص واحد تساوي م مضروبة في، س ناقص س واحد. م هي الميل. وَ س واحد وَ ص واحد، هو إحداثي نقطة على المستقيم. بعد كده هنبدأ نشوف مثال، إزّاي نكتب معادلة المستقيم، إذا عُلم ميله ونقطة يمرّ بها.

مطلوب كتابة معادلة المستقيم المارّ بنقطة ستة وسالب اتنين، وميله سالب أربعة. أول حاجة، هنكتب صيغة الميل ونقطة. وهي: ص ناقص ص واحد تساوي م مضروبة في، س ناقص س واحد. معطى عندنا الميل في السؤال، هو سالب أربعة. يبقى م تساوي سالب أربعة. والنقطة هي ستة وسالب اتنين. يبقى هي دي النقطة س واحد وَ ص واحد.

هنبدأ نعوّض في المعادلة الخطية، بصيغة الميل ونقطة. هيبقى عندنا ص ناقص سالب اتنين تساوي سالب أربعة مضروبة في، س ناقص ستة. وبالتالي نقدر نقول إن ص زائد اتنين هتساوي سالب أربعة س زائد أربعة وعشرين. هنطرح اتنين من طرفَي المعادلة. هيبقى عندنا ص تساوي سالب أربعة س زائد اتنين وعشرين. يبقى كده عرفنا نكتب معادلة المستقيم، باستخدام صيغة الميل ونقطة يمرّ بها المستقيم.

بعد كده هنجيب صفحة جديدة، ونشوف مثال إزّاي نكتب معادلة المستقيم المارّ بنقطتين. مطلوب كتابة معادلة المستقيم المارّ بالنقطتين: سالب اتنين وسبعة، وتلاتة وسالب تلاتة. أول حاجة، هنفرض دي النقطة الأولى، س واحد وَ ص واحد. ودي النقطة التانية، هي س اتنين وَ ص اتنين. هنبدأ نحسب ميل المستقيم. م تساوي فرق الصادات على فرق السينات. يعني ص اتنين ناقص ص واحد، على س اتنين ناقص س واحد.

هنبدأ نعوّض. هنلاقي إن م هتساوي سالب تلاتة ناقص سبعة، مقسومة على تلاتة ناقص سالب اتنين. وبالتالي م هتساوي سالب عشرة على خمسة. يعني م هتساوي سالب اتنين. يبقى كده قدرنا نحسب الميل، وهو سالب اتنين.

بعد كده هنبدأ نكتب صيغة الميل ونقطة. وهي: ص ناقص ص واحد تساوي م مضروبة في، س ناقص س واحد. هنبدأ نعوّض عن س، بسالب اتنين. وهنختار أيّ نقطة نعوّض بيها، ولْيكُن النقطة تلاتة وسالب تلاتة. يبقى ص ناقص سالب تلاتة هتساوي م، اللي هي سالب اتنين، مضروبة في، س ناقص تلاتة. وبالتالي ص زائد تلاتة هتساوي سالب اتنين س زائد ستة. هنبدأ نطرح تلاتة من طرفَي المعادلة. هيبقى عندنا ص تساوي سالب اتنين س زائد تلاتة. يبقى كده عرفنا نكتب معادلة المستقيم المارّ بنقطتين.

يبقى اتكلمنا عن طريقة كتابة المعادلة الخطية، بصيغة الميل والمقطع، وصيغة الميل ونقطة. وعرفنا كمان نكتب معادلة المستقيم المارّ بنقطتين.