فيديو السؤال: إيجاد مساحة السطح الكلية للهرم الرياضيات

أوجد المساحة الكلية للهرم المنتظم التالي، لأقرب جزء من مائة.

٠٤:١٦

‏نسخة الفيديو النصية

أوجد المساحة الكلية للهرم المنتظم التالي، لأقرب جزء من مائة.

يطلب منا هذا السؤال إيجاد مساحة السطح الكلية لهذا الهرم المنتظم. والهرم المنتظم تكون قاعدته على شكل مضلع منتظم. في هذه الحالة، للقاعدة أربعة أضلاع، لذا فهي شكل رباعي منتظم، أي مربع. لإيجاد مساحة السطح الكلية لهذا الهرم، علينا إيجاد مساحة قاعدته المربعة ومساحة كل وجه من أوجهه الجانبية. وهي الأوجه المثلثية التي تصل كل حرف من القاعدة المربعة برأس الهرم. وبما أن الهرم منتظم، فإن هذه الأوجه ستكون متطابقة. دعونا نوجد مساحة القاعدة أولًا. كما ذكرنا، القاعدة عبارة عن مربع، ومن ثم فإن مساحتها تساوي مربع طول ضلعها. أي ٣٢ تربيع، وهو ما يساوي ١٠٢٤. ووحدة قياس هذه المساحة هي السنتيمتر المربع.

بعد ذلك، علينا التفكير في المساحة الجانبية، وهي مساحة كل من الأوجه المثلثة. نحن نعرف أن مساحة المثلث تساوي طول قاعدته مضروبًا في ارتفاعه العمودي على اثنين. وقاعدة هذه المثلثات موضحة في الشكل. إنها طول ضلع المربع، الذي يساوي ٣٢ سنتيمترًا. ولكن ماذا عن الارتفاع العمودي؟ في سياق الأوجه الجانبية للهرم، يكون لهذا الارتفاع اسم آخر. يطلق عليه «الارتفاع الجانبي للهرم». علينا الانتباه جيدًا لأن الارتفاع الموضح على الشكل، الذي يساوي ٣٧ سنتيمترًا، ليس هو الارتفاع الجانبي. بل إنه الارتفاع العمودي للهرم.

ومع ذلك، يمكننا استخدام هذا لحساب الارتفاع الجانبي. يتكون مثلث قائم الزاوية من الارتفاع الجانبي للهرم، وارتفاعه العمودي، وهذا الخط الذي يصل نقطة منتصف أحد أحرف القاعدة بمركز القاعدة. وهذا الخط مواز لأضلاع المربع. وبما أنه يبدأ من المركز، فإن طوله يساوي نصف طول ضلع المربع. أي ٣٢ على اثنين، وهو ما يساوي ١٦ سنتيمترًا. وبما أننا نعرف طولي ضلعين في المثلث القائم الزاوية، يمكننا حساب طول الضلع الثالث باستخدام نظرية فيثاغورس. وتنص على أنه «في المثلث القائم الزاوية، يكون مربع طول الوتر مساويًا لمجموع مربعي طولي الضلعين القصيرين». في هذا المثلث، الضلع الذي يساوي طوله ﻝ سنتيمترًا، حيث ﻝ الارتفاع الجانبي للهرم، هو الوتر. إذن، يصبح لدينا المعادلة ﻝ تربيع يساوي ٣٧ تربيع زائد ١٦ تربيع. يمكن تبسيط ذلك إلى ﻝ تربيع يساوي ١٣٦٩ زائد ٢٥٦، وهو ما يساوي ١٦٢٥. إذن، ﻝ يساوي الجذر التربيعي لـ ١٦٢٥، وهو ما يساوي خمسة جذر ٦٥، على الصورة المبسطة.

حسنًا، وجدنا الآن أن الارتفاع الجانبي للهرم، وهو الارتفاع العمودي لكل وجه من أوجهه الجانبية المثلثة، يساوي خمسة جذر ٦٥ سنتيمترًا. وباستخدام صيغة طول القاعدة في الارتفاع العمودي على اثنين، نجد أن مساحة كل من هذه المثلثات تساوي ٣٢ في خمسة جذر ٦٥ على اثنين، ونلاحظ أن لدينا هنا أربعة مثلثات. يمكن تبسيط المساحة الجانبية للهرم إلى ٣٢٠ جذر ٦٥ سنتيمترًا مربعًا.

مساحة السطح الكلية تساوي مجموع مساحة القاعدة والمساحة الجانبية، أي ١٠٢٤ زائد ٣٢٠ جذر ٦٥، وهو ما يساوي ٣٦٠٣٫٩٢٢٤ وهكذا مع توالي الأرقام، على صورة عدد عشري. يطلب منا السؤال تقريب الإجابة لأقرب جزء من مائة. وبما أن العدد الموجود في المنزلة العشرية الثالثة هو اثنان، فسنقرب لأسفل إلى ٣٦٠٣٫٩٢. إذن، وجدنا أن المساحة الكلية للهرم المنتظم، لأقرب جزء من مائة، تساوي ٣٦٠٣٫٩٢ سنتيمترات مربعة.

تستخدم نجوى ملفات تعريف الارتباط لضمان حصولك على أفضل تجربة على موقعنا. معرفة المزيد حول سياسة الخصوصية لدينا.