فيديو: أقطار متوازي الأضلاع

يوضح الفيديو أقطار متوازي الأضلاع وخصائصها وأمثلةً عليها.

١٣:٥٤

‏نسخة الفيديو النصية

أقطار متوازي الأضلاع.

أيّ متوازي أضلاع بيكون له قطرين. يعني على سبيل المثال، أنا عندي قدامي الشكل هو عبارة عن متوازي الأضلاع أ ب ج د. أ ج، وَ ب د هم قطرَي متوازي الأضلاع أ ب ج د. يبقى في الحالة دي، أقدر أعرّف قطر متوازي الأضلاع. وهو عبارة عن الضلع، أو القطعة المستقيمة الواصلة بين رأسين غير متجاورين. يعني القطر أ ج هو بيصل بين الرأس أ، والرأس ج. والضلع ب د أو القطر ب د، هو القطر الذي يصل بين الرأس ب، والرأس د.

في الحالة دي بنكون محتاجين نعرف إيه هي خصائص أقطار متوازي الأضلاع. تعالوا نكتب خصائص أقطار متوازي الأضلاع، بس في صفحة جديدة. أول خاصية عندي من خصائص أقطار متوازي الأضلاع. وهي إن قطرَي متوازي الأضلاع يلتقوا في نقطة، تقسِّم كل قطر من القطرين لجزئين متطابقين. فيما معناه إن كل قطر بينصِّف القطر الآخَر.

على سبيل المثال، في متوازي الأضلاع أ ب ج د. القطر أ ج والقطر ب د، بيلتقوا في نقطة م. في الحالة دي أقدر أقول إن أ م بيساوي م ج. وإن طول ب م بيساوي طول م د. يبقى م هي عبارة عن منتصف أ ج اللي هو القطر أ ج، ومنتصف القطر ب د. وهي في نفس الوقت نقطة تَلاقي القطرين: أ ج، وَ ب د. يبقى في الحالة دي أقدر أقول إن الضلع أ م، بيطابق الضلع م ج. وإن الضلع ب م، بيطابق الضلع م د.

تاني خاصية من خصائص أقطار متوازي الأضلاع. قطر متوازي الأضلاع بيقسم متوازي الأضلاع لمثلثين متطابقين. يعني، على سبيل المثال، في متوازي الأضلاع اللي مرسوم عندنا في الخاصية الأولى. القطر أ ج بيقسم متوازي الأضلاع للمثلث أ ب ج، والمثلث أ د ج. يبقى في الحالة دي أقدر أقول إن المثلث أ ب ج، بيطابق المثلث ج د أ. وبنفس الشكل، بالنسبة للقطر ب د. القطر ب د بيقسم متوازي الأضلاع بالمثلث د أ ب، والمثلث ب ج د. يبقى في الحالة دي أقدر أقول إن المثلث د أ ب، بيطابق المثلث ب ج د.

وبكده بنكون عرفنا خصائص أقطار متوازي الأضلاع. وهم الخاصيتين اللي شرحناهم. وهي إن كل قطر في متوازي الأضلاع، بينصّف القطر الآخَر. وتاني خاصية إن قطر متوازي الأضلاع، بيقسم متوازي الأضلاع لمثلثين متطابقين. هناخد بعض الأمثلة، بس في صفحة جديدة.

أوجد قيمة ص في متوازي الأضلاع أ ب ج د، الموضَّح بالشكل.

الرسمة اللي قدامنا، هو مدّيني متوازي أضلاع أ ب ج د. وأ ج، وَ ب د هم قطرَي متوازي الأضلاع، بيلتقوا في نقطة م. يبقى في الحالة دي أقدر أقول إن م هي عبارة عن منتصف القطر أ ج، ومنتصف القطر ب د. لأن دي إحدى خصائص أقطار متوازي الأضلاع. يبقى في الحالة دي أقدر أقول بما أن أ ب ج د متوازي أضلاع. وَ أ ج، وَ ب د هم قطرَي متوازي الأضلاع. وفي نفس الوقت بما أن الضلع أو القطر أ ج، بيتقاطع مع القطر ب د في … يبقى في الحالة دي أقدر أقول إن طول الضلع أ م، بيساوي طول الضلع م ج.

وفي الرسمة مدّيني إن طول الضلع أ م بيساوي ص، عفوا بيساوي ص زائد تسعة سنتيمتر. وإن طول الضلع م ج بيساوي اتنين ص زائد أربعة سنتيمتر. يبقى في الحالة دي هنطرح ص من طرفين المعادلة. هيتبقّى عندي إن تسعة بتساوي اتنين ص زائد أربعة ناقص ص. يعني بتساوي ص زائد أربعة. يبقى في الحالة دي أقدر أقول إن ص بتساوي تسعة ناقص أربعة. يعني بتساوي خمسة. وهو ده اللي مطلوب مني في المسألة، إني أجيب قيمة ص.

مثال تاني في صفحة جديدة. إذا كان أ ب ج د متوازي أضلاع، أوجد قيمة س، وَ ص، وَ ع.

الرسمة اللي قدامنا هو مدّيني إن أ ب ج د متوازي أضلاع. وبيدّيني عليها بعض البيانات. وطالب مني إني أجيب قيمة س، وَ ص، وَ ع. في البداية بما إن أ ب ج د متوازي الأضلاع. أو أ ب ج د متوازي أضلاع، في الحالة دي، من خصائص متوازي الأضلاع، إن كل ضلعين متقابلين، متطابقين. وفي متوازي الأضلاع أ ب ج د، الضلع أ د بيقابل الضلع ب ج. يبقى في الحالة دي أقدر أقول إن الضلع أ د، بيطابق الضلع ب ج. يبقى في الحالة دي أقدر أقول إن طول ضلع أ د، بيساوي طول ضلع ب ج.

طول الضلع أ د بيساوي تلاتة س سنتيمتر. وطول الضلع ب ج بيساوي تلاتة وتلاتين سنتيمتر. يبقى في الحالة دي أقدر أقول إن س بتساوي تلاتة وتلاتين على تلاتة. يعني بتساوي حداشر. وده أول مطلوب عندي في المسألة.

تاني حاجة مطلوب منّي إني أجيب قيمة ص. في متوازي الأضلاع أ ب ج د؛ أ ج، وَ ب د هم قطرَي متوازي الأضلاع. من خصائص أقطار متوازي الأضلاع، إن كل قطر بيقسم متوازي الأضلاع لمثلثين متطابقين. لو جينا نبصّ للقطر ب د، هلاقي إن هو بيقسم متوازي الأضلاع للمثلثين: د أ ب، والمثلث ب ج د. يبقى في الحالة دي أقدر أقول إن المثلث د أ ب، بيطابق المثلث ب ج د.

يبقى في الحالة دي أقدر أقول إن قياس زاوية أ ب د، هتساوي قياس زاوية ج د ب. وقياس زاوية أ ب د على الرسمة بتساوي خمسة وتلاتين درجة. وقياس زاوية ج د ب بيساوي خمسة ص درجة. يبقى في الحالة دي أقدر أجيب قيمة ص، عن طريق إن أنا هقسم الطرفين على خمسة. يعني بتساوي خمسة وتلاتين على خمسة. يعني بتساوي سبعة. وده تاني مطلوب عندي في المسألة.

تالت مطلوب عندي إني أجيب قيمة ع. من خصائص أقطار متوازي الأضلاع، إن كل قطر بينصّف القطر الآخَر، في نقطة تَلاقي القطرين. أنا عندي القطر أ ج، والقطر ب د، بيلتقوا في نقطة م. يبقى في الحالة دي أقدر أقول إن الضلع أ م، بيطابق الضلع ج م. يبقى في الحالة دي أقدر أقول إن طول الضلع أ م، بيساوي طول الضلع ج م.

طول الضلع أ م مدّيهوني إن هو بيساوي ستة ع ناقص خمسة وعشرين. وطول الضلع ج م بيساوي ع. يبقى في الحالة دي أقدر أطرح من طرفين المعادلة اللي عندي، ع. يبقى ستة ع ناقص ع بيساوي خمسة ع، ناقص خمسة وعشرين بتساوي صفر. هجمع على طرفين المعادلة خمسة وعشرين. يبقى خمسة ع بيساوي خمسة وعشرين. يبقى ع بتساوي خمسة وعشرين على خمسة. يبقى ع بتساوي خمسة. وده تالت مطلوب عندي في المسألة. يبقى أنا كده جبت قيمة س، وَ ص، وَ ع.

مثال تاني في صفحة جديدة. حدِّد إحداثيات نقطة تَلاقي قطرَي متوازي الأضلاع س ص ع م. إذا كانت إحداثيات رؤوسه هي؛ س: سالب اتنين، وأربعة. ص: تلاتة، وخمسة. ع: اتنين، وسالب تلاتة. وَ م إحداثياتها هي: سالب تلاتة، وسالب أربعة.

متوازي الأضلاع س ص ع م. لو جينا نرسم، على سبيل المثال، إن هو ده متوازي الأضلاع س ص ع م. يبقى في الحالة دي قطرَي متوازي الأضلاع هو عبارة عن القطر س ع، والقطر م ص. القطرين بيلتقوا في نقطة، على سبيل المثال، هي نقطة أ. هو طالب منّي إني أجيب إحداثيات نقطة أ. من خصائص أقطار متوازي الأضلاع، إن قطرَي متوازي الأضلاع بيلتقوا في نقطة، هي عبارة عن منتصف كل قطر من الاتنين. يعني نقطة أ هي عبارة عن نقطة منتصف بتاعة القطر س ع. ونقطة أ هي عبارة عن نقطة منتصف القطر ص م.

يبقى في الحالة دي أقدر أجيب إحداثيات نقطة أ. عن طريق إن أنا هجمع الإحداثي السيني لنقطة س ونقطة ع، وأقسمها على اتنين. وأجمع الإحداثي الصادي لنقطة س ونقطة ع، وأقسمها على اتنين. أو عن طريق إن أنا هجمع الإحداثي السيني لنقطة ص، مع الإحداثي السيني لنقطة م؛ وأقسمها على اتنين. وأجمع الإحداثي الصادي لنقطة ص، مع الإحداثي الصادي لنقطة م؛ وأقسمها على اتنين.

فلو جينا نجيب إحداثيات نقطة أ، عن طريق القطر س ع. هنلاقي إن إحداثيات أ هي عبارة عن … الإحداثي السيني لنقطة س هو عبارة عن سالب اتنين. زائد الإحداثي السيني لنقطة ع، اللي هو بيساوي اتنين. الكل مقسوم على اتنين. والإحداثي الصادي لنقطة س هو عبارة عن النقطة أربعة. زائد الإحداثي الصادي لنقطة ع، اللي هي عبارة عن سالب تلاتة. الكل مقسوم على اتنين.

يبقى إحداثيات أ هي عبارة عن … سالب اتنين زائد اتنين بتساوي صفر، على اتنين، اللي هي بتساوي صفر. وأربعة زائد سالب تلاتة، يعني أربعة ناقص تلاتة، بتساوي واحد. واحد على اتنين بيساوي نص. دي إحداثيات نقطة أ، اللي هي عبارة عن نقطة تَلاقي قطرَي متوازي الأضلاع س ص ع م.

طيب لو عايز أتأكّد، أقدر أجيب إحداثيات نقطة أ، زيّ ما قلنا، عن طريق إحداثيات ص وَ م. يبقى في الحالة دي أقدر أقول إن إحداثيات نقطة أ، هي عبارة عن الإحداثي الصادي … عفوًا، الإحداثي السيني لنقطة ص، اللي هو بيساوي تلاتة. زائد الإحداثي السيني لنقطة م، اللي هو سالب تلاتة. الكل مقسومة على اتنين. والإحداثي الصادي لنقطة ص، اللي هي عبارة عن خمسة. زائد الإحداثي الصادي لنقطة م، اللي هو سالب أربعة. الكل مقسوم على اتنين.

في الحالة دي، هنلاقي إن إحداثيات نقطة أ بتساوي … تلاتة زائد سالب تلاتة بتساوي صفر. صفر على اتنين بتساوي صفر. وخمسة زائد سالب أربعة بيساوي واحد. واحد على اتنين بيساوي نص. في الحالتين، إحداثيات نقطة أ، اللي هي عبارة عن نقطة تَلاقي قطرَي متوازي الأضلاع، بتساوي صفر ونص.

وبكده بنكون عرفنا إيه هو قطرَي متوازي الأضلاع. وإيه هو تعريف قطر متوازي الأضلاع. وإيه هي خصائص أقطار متوازي الأضلاع.

تستخدم نجوى ملفات تعريف الارتباط لضمان حصولك على أفضل تجربة على موقعنا. معرفة المزيد حول سياسة الخصوصية لدينا.