فيديو السؤال: تحديد القوة المؤثرة على سطح مغمور بالماء الفيزياء

يدفع الماء في حاوية أفقيًّا بجدار متحرك في هذه الحاوية، كما هو موضح في الشكل. توجد داخل الجزء المغمور بالماء من الحاوية صفيحة معدنية مربعة طول ضلعها ‪0.25 m‬‏. قاعدة الصفيحة ملصقة بأرضية الحاوية، فيبقيها ذلك في وضع رأسي. يدفع الماء الصفيحة عند تحرك جدار الحاوية المتحرك. طول ضلعي الجدار المتحرك: ‪𝐿₂ = 0.25 m‬‏، ‪𝐿₃ = 0.75 m‬‏. والقوة التي تؤثر على الجدار المتحرك تساوي القوة التي يؤثر بها الجدار على الماء. ما مقدار القوة التي تدفع سطح الصفيحة المعدنية الذي يواجه الجدار المتحرك؟

٠٦:١٤

‏نسخة الفيديو النصية

يدفع الماء في حاوية أفقيًّا بجدار متحرك في هذه الحاوية، كما هو موضح في الشكل. توجد داخل الجزء المغمور بالماء من الحاوية صفيحة معدنية مربعة طول ضلعها 0.25 متر. قاعدة الصفيحة ملصقة بأرضية الحاوية، فيبقيها ذلك في وضع رأسي. يدفع الماء الصفيحة عند تحرك جدار الحاوية المتحرك. طول ضلعي الجدار المتحرك: ‪𝐿‬‏ اثنان يساوي 0.25 متر و‪𝐿‬‏ ثلاثة يساوي 0.75 متر. والقوة التي تؤثر على الجدار المتحرك تساوي القوة التي يؤثر بها الجدار على الماء. ما مقدار القوة التي تدفع سطح الصفيحة المعدنية الذي يواجه الجدار المتحرك؟

بالنظر إلى الشكل، نلاحظ هذه الصفيحة المعدنية المربعة مثبتة في وضع رأسي داخل الحاوية الممتلئة بالماء. أحد الجوانب الأربعة لهذه الحاوية جدار متحرك، ونلاحظ أن قوة مقدارها 75 نيوتن تؤثر على هذا الجدار. ‏‪𝐿‬‏ اثنان و‪𝐿‬‏ ثلاثة هما بعدا هذا الجدار المتحرك المغموران بالماء. في هذا الجزء من السؤال، نريد معرفة مقدار القوة التي تدفع سطح الصفيحة المعدنية الذي يواجه الجدار المتحرك. إذن فإن اتجاه هذه القوة ناحية اليمين بعيدًا عن الجدار.

لكي نبدأ حل هذا السؤال، لاحظ أن هذه القوة المؤثرة على هذه المساحة من الجدار المتحرك تنتج ضغطًا. ووفقًا لمبدأ باسكال، هذا الضغط يساوي القوة مقسومة على المساحة. الضغط ‪𝑃‬‏ الناتج عن هذه القوة التي تساوي 75 نيوتن ينتقل بعد ذلك إلى جميع أنحاء المائع في الحاوية. ومن ثم، يؤثر هذا الضغط على أي جسم في الحاوية، مثل هذه الصفيحة المعدنية المربعة. بما أن القوة التي نرغب في إيجادها تؤثر باتجاه اليمين، فدعونا نرمز لها بالرمز ‪𝐹𝑅‬‏. والضغط ‪𝑃‬‏ الناتج عن القوة المؤثرة على الجدار المتحرك يساوي هذه القوة، التي سنطلق عليها ‪𝐹‬‏ الجدار، مقسومة على مساحة الجدار المغمورة بالماء.

ذكرنا أن هذا الضغط ينتقل إلى جميع أنحاء الماء في الحاوية. ومن ثم، فإن ‪𝑃‬‏ يساوي أيضًا القوة التي نريد إيجادها ‪𝐹𝑅‬‏، مقسومة على مساحة الصفيحة المعدنية المربعة. بإعادة ترتيب هذه المعادلة، نجد أن هذه القوة تساوي مساحة الصفيحة على مساحة الجدار المغمورة بالماء في القوة المؤثرة على الجدار. لنتمكن من إيجاد الناتج، دعونا نفرغ بعض المساحة أعلى الشاشة. نلاحظ أن ‪𝐹‬‏ الجدار، التي تسمى ‪𝐹‬‏ فقط في هذا الشكل، تساوي 75 نيوتن، و‪𝐿‬‏ اثنين وفقًا لمعطيات المسألة يساوي 0.25 متر، و‪𝐿‬‏ ثلاثة يساوي 0.75 متر، وأخيرًا طول كل ضلع من أضلاع الصفيحة المعدنية المربعة يساوي 0.25 متر. هذا يعني أن مساحة هذه الصفيحة تساوي هذا البعد تربيع.

صرنا الآن جاهزين تقريبًا لحساب القوة ‪𝐹𝑅‬‏. لكن قبل أن نفعل ذلك، لاحظ أن مساحة الجدار تساوي ‪𝐿‬‏ اثنين في ‪𝐿‬‏ ثلاثة. إذن هذه هي الطريقة التي سنحسب بها ‪𝐹𝑅‬‏. لاحظ أنه في هذه المعادلة، تحذف وحدة المتر المربع في البسط مع المتر المربع في المقام، فيتبقى لدينا في النهاية وحدة النيوتن فقط، وهي وحدة قياس القوة. بحساب هذا المقدار، نجد أن الناتج يساوي 25 نيوتن. هذا هو مقدار القوة المؤثرة على سطح الصفيحة المعدنية المربعة الذي يواجه الجدار المتحرك.

والآن دعونا نتناول الجزء الثاني من هذا السؤال.

ما مقدار القوة التي تدفع سطح الصفيحة المعدنية الذي لا يواجه الجدار المتحرك؟

لنفترض أن هذا منظر جانبي للصفيحة المعدنية، وفي الجزء الأول من السؤال حسبنا مقدار القوة المؤثرة باتجاه اليمين على هذه الصفيحة التي يرمز لها بالرمز ‪𝐹𝑅‬‏. وفي الجزء الثاني من السؤال، نريد حساب القوة المؤثرة على سطح الصفيحة المعدنية الذي لا يواجه الجدار المتحرك. هذه القوة تدفع الصفيحة إلى اليسار، لذا سنرمز لها بالرمز ‪𝐹𝐿‬‏. لإيجاد قيمة ‪𝐹𝐿‬‏، لن نحتاج في الحقيقة إلى إجراء أي عمليات حسابية.

تذكر ما ذكرناه سابقًا بأن الضغط الناتج عن هذا الجدار المتحرك الذي يدفع المائع ينتقل بالتساوي في جميع أنحاء ذلك المائع. هذا يعني أن أي نقطة في المائع، مثل هذه النقطة هنا، ستتعرض لقوى متساوية تؤثر في جميع الاتجاهات. ينطبق الأمر نفسه على أي نقطة على سطح الصفيحة المعدنية، وكذلك القوى المؤثرة على الصفيحة نفسها. وهذه القوى جميعها تؤثر بالتساوي في جميع الاتجاهات. إذا لم يكن الأمر كذلك، فسيكون للصفيحة المعدنية قوة محصلة. ومن ثم، ستتسارع حركتها. لكن بما أن الصفيحة المعدنية في حالة اتزان، يمكننا القول إن مقداري هاتين القوتين متساويان. إذن بما أن ‪𝐹𝑅‬‏ تساوي 25 نيوتن، فهذه قيمة ‪𝐹𝐿‬‏ أيضًا.

وعليه، فإن مقدار القوة التي تدفع سطح الصفيحة المعدنية الذي لا يواجه الجدار المتحرك يساوي 25 نيوتن.

تستخدم نجوى ملفات تعريف الارتباط لضمان حصولك على أفضل تجربة على موقعنا. معرفة المزيد حول سياسة الخصوصية لدينا.