فيديو: إيجاد تكامل دالة كثيرة الحدود باستخدام قاعدة القوى

أوجد ∫(25𝑥² − 65𝑥 + 36) d𝑥.

٠٦:٣٨

‏نسخة الفيديو النصية

أوجد التكامل غير المحدد للدالة 25𝑥 تربيع ناقص 65𝑥 زائد 36 بالنسبة إلى 𝑥.

يعني هذا الرمز أننا بصدد البحث عن دالة تكون مشتقتها هي المقدار المشار إليه هنا، 25𝑥 تربيع ناقص 65𝑥 زائد 36. أول ما نلاحظه أننا يمكننا إيجاد المشتقة العكسية لكل حد على حدة. لماذا؟ حسنًا، إذا وجدنا دالة ينتج عن اشتقاقها 25𝑥 تربيع، أي المشتقة العكسية لـ 25𝑥 تربيع، والمشتقات العكسية للحدود الأخرى أيضًا، بمعنى التوصل إلى دالتين أخريين مشتقاتهما 65𝑥 و36 على التوالي، فإذا اشتققنا هذا التركيب من الدوال، الدالة 𝑓 في المتغير 𝑥 ناقص الدالة 𝑔 في المتغير 𝑥 زائد الدالة ℎ في المتغير 𝑥، فإنه باستخدام خاصية الاشتقاق التي تنص على أن مشتقة مجموع عدة دوال أو الفرق بينها تساوي مجموع مشتقاتها أو الفرق بينها، فإننا نحصل على 25𝑥 تربيع ناقص 65𝑥 زائد 36.

قد تود إيقاف الفيديو هنا لبضع ثوان لتفكر في الأمر. وهذا المقدار التربيعي هو ما نود إيجاد مشتقته العكسية. إذن أصبحت المسألة أن نوجد ما يكون ناتج اشتقاقه هو 25𝑥 تربيع ناقص 65𝑥 زائد 36. وقد أوضحنا أنه بإمكاننا حل ذلك فقط لو استطعنا إيجاد المشتقات العكسية لكل من 25𝑥 تربيع و65𝑥 و36 على حدة. وبذلك، نكون قد حولنا مسألة واحدة كبيرة إلى ثلاث مسائل أصغر.

فلنحاول إيجاد الدوال 𝑓 و𝑔 وℎ بالخصائص المطلوبة. لاحظ أن كلًا من هذه المشتقات هو مقدار وحيد الحد. أي إن جميعها في صورة 𝑎 في 𝑥 مرفوعًا للقوة الأسية 𝑛، حيث 𝑛 عدد صحيح. إذن لو تمكنا من إيجاد المشتقة العكسية لشيء بهذه الصيغة، نكون بذلك قد توصلنا للحل. هل يمكنك التفكير في دالة مشتقتها 36؟ أوقف الفيديو قليلًا وفكر في الأمر.

إن ميل منحنى هذه الدالة عبارة عن ثابت. فهو دائمًا 36، أينما كنت. ولذا، لا بد أن يكون تمثيلًا بيانيًا لخط مستقيم. ومن ثم، يمكن للدالة ℎ في المتغير 𝑥 أن تساوي 36𝑥. والتمثيل البياني لهذه الدالة هو خط مستقيم ميله 36. وبالفعل مشتقة الدالة تساوي 36 إذا حسبتها. وبالطبع، الدالة ℎ في المتغير 𝑥 تساوي 36𝑥 زائد واحد ستكون مناسبة أيضًا، وكذلك 36𝑥 ناقص سبعة. في الواقع، أي ثابت سيكون مناسبًا هنا. وسنعود إلى هذا بعد قليل. لكن سنحاول الآن إيجاد الدالة 𝑔 في المتغير 𝑥، التي ينتج عن اشتقاقها 65𝑥.

تذكر أنه عند محاولة إيجاد مشتقة دالة أسية للمتغير 𝑥، فإننا نقلل الأس بمقدار واحد. فمشتقة 𝑥 مرفوعًا للقوة الأسية 𝑛 تساوي حاصل ضرب 𝑛 في 𝑥 مرفوعًا للقوة الأسية 𝑛 ناقص واحد. وبشكل عام، يمكننا إيجاد مشتقة ثابت مضروبًا في دالة أسية للمتغير 𝑥. مشتقة 𝑎 في 𝑥 مرفوعًا للقوة الأسية 𝑛 تساوي 𝑎 في 𝑛𝑥 مرفوعًا للقوة الأسية 𝑛 ناقص واحد. والآن، إذا قارنا هذا الطرف الأيمن، 𝑎 في 𝑛𝑥 مرفوعًا للقوة الأسية 𝑛 ناقص واحد، مع 65𝑥، يمكننا ملاحظة أن 𝑎 في 𝑛 لا بد أن يساوي 65. ومن معامل هذا الحد، وبالنظر إلى الأس، يمكننا ملاحظة أن 𝑛 ناقص واحد لا بد أن يساوي واحدًا. ومن ثم، لا يكون من الصعب حل هاتين المعادلتين. فقيمة 𝑛 لا بد أن تكون اثنين. وباستخدام هذه القيمة لـ 𝑛 في المعادلة الأخرى، نرى أنه لا بد لـ 𝑎 أن يساوي 65 على اثنين. فما الذي ينتج عن اشتقاقه القيمة 65𝑥؟ باستخدام قيم 𝑎 و𝑛 التي توصلنا إليها، نعلم أن الإجابة هي 65 على اثنين 𝑥 تربيع. ويمكنك التأكد، إن أردت، من أن هذه الدالة ينتج عن اشتقاقها بالفعل 65𝑥.

والآن مهمتنا الأخيرة هي إيجاد ما ينتج عن اشتقاقه 25𝑥 تربيع. نقارن 25𝑥 تربيع بـ 𝑎 في 𝑛𝑥 مرفوعًا للقوة الأسية 𝑛 ناقص واحد. ونلاحظ أن 𝑎 في 𝑛 لا بد أن يساوي 25، و𝑛 ناقص واحد يساوي اثنين. مرة أخرى، يمكننا حل ذلك بصورة مباشرة. 𝑛 يساوي ثلاثة و𝑎 يساوي 25 على ثلاثة. إذن فالدالة 𝑓 للمتغير 𝑥، والتي على الصورة 𝑎𝑥 مرفوعًا للقوة الأسية 𝑛، تساوي 25 على ثلاثة 𝑥 تكعيب. وقد أوجدنا الدالة 𝑓 للمتغير 𝑥، والدالة 𝑔 للمتغير 𝑥، والدالة ℎ للمتغير 𝑥. تذكر أننا أثبتنا أن المشتقة العكسية التي نبحث عنها يمكن كتابتها بدلالة هذه الدوال 𝑓 و𝑔 وℎ. ويمكننا التعويض بالمقادير التي أوجدناها لكل منها. هل هذا هو جوابنا إذن؟ ليس تمامًا.

فرغم أنه بإمكانك التأكد من أن اشتقاق ذلك بالفعل يعطينا 25𝑥 تربيع ناقص 65𝑥 زائد 36، هناك دوال أخرى تعطينا ذلك أيضًا. فلأي ثابت 𝐶، سواء كان واحدًا أو سالب سبعة أو أي عدد آخر، فإن الدالة 25 على ثلاثة 𝑥 تكعيب ناقص 65 على اثنين 𝑥 تربيع زائد 36𝑥 زائد 𝐶، سينتج أيضًا عن اشتقاقها المقدار التربيعي المطلوب. وهذه هي المشتقة العكسية لـ 25𝑥 تربيع ناقص 65𝑥 زائد 36. أو بعبارة أخرى، هي التكامل غير المحدد لهذا المقدار التربيعي. علينا ألا ننسى زائد 𝐶.

وها نحن قد أجبنا عن هذه المسألة باستخدام ما نعرفه عن الاشتقاق. على سبيل المثال، في بداية الفيديو، أثبتنا باستخدام خصائص الاشتقاق أنه يمكننا إيجاد المشتقة العكسية لكل حد على حدة ثم تجميعها معًا. واستخدمنا أيضًا ما نعرفه عن مشتقة دالة وحيدة الحد، 𝑎 في 𝑥 مرفوعًا للقوة الأسية 𝑛. ووجدنا أنه باستخدام هذه الصيغة، يمكننا كتابة بعض المعادلات الآنية باستخدام المعامل والأس، والتي يمكننا حلها بعد ذلك لإيجاد قيمتي 𝑎 و𝑛 اللتين نبحث عنهما.

ولكن بالتأكيد كان من الممكن أن يصبح الأمر أسهل إذا كنا نعرف ما يمكننا اشتقاقه للحصول على 𝑎 في 𝑥 مرفوعًا للقوة الأسية 𝑛. كنا إذن سنتفادى حل معادلة في كل مرة. ويتضح أن ما علينا اشتقاقه لنحصل على 𝑎 في 𝑥 مرفوعًا للقوة الأسية 𝑛 هو 𝑎 على 𝑛 زائد واحد في 𝑥 مرفوعًا للقوة الأسية 𝑛 زائد واحد. وهذه الصيغة تكون صحيحة طالما أن 𝑛 لا يساوي سالب واحد. إذا كان 𝑛 يساوي سالب واحد، فإنه يصبح لدينا صفر في المقام، وهذه تمثل مشكلة. يمكننا أيضًا التعبير عن هذه الصيغة الأخيرة باستخدام رمز التكامل غير المحدد، حيث من المهم — مرة أخرى — ألا ننسى زائد 𝐶.

تستخدم نجوى ملفات تعريف الارتباط لضمان حصولك على أفضل تجربة على موقعنا. معرفة المزيد حول سياسة الخصوصية لدينا.