تستخدم نجوى ملفات تعريف الارتباط لضمان حصولك على أفضل تجربة على موقعنا. معرفة المزيد حول سياسة الخصوصية لدينا.

فيديو: استخدام الرسم البياني للتنبؤ: الرسومات الخطية

أحمد لطفي

يوضح الفيديو كيفية استخدام الرسم البياني للتنبؤ عن طريق استخدام الرسومات الخطية في توقع الأحداث المستقبلية.

٠٦:٤٧

‏نسخة الفيديو النصية

هنتكلم عن استخدام الرسم البياني للتنبؤ، وهنعرف إزاي نقدر نستخدم نوع خاص من أنواع الرسم البياني، وهو الرسومات الخطية، في تنبؤ الأحداث المستقبلية.

في البداية لو عندنا مثال بالشكل ده، عندنا كوب به ماء، وهنضع فيه عدد من العملات المعدنية. في البداية هنقيس ارتفاع الماء لما يكون بداخل الكوب صفر عملات معدنية. وبعدين هنضيف خمس عملات معدنية، ونقيس ارتفاع الماء بداخل الكوب. وبعدين هنضيف خمس عملات معدنية أخرى، عشان يكون مجموع العملات المعدنية بداخل الكوب عشر عملات معدنية، وهنقيس ارتفاع الماء. وهنضيف خمس عملات أخرى، وهنقيس ارتفاع الماء. وهنضيف خمس عملات أخرى، وهنقيس ارتفاع الماء. يبقى كده الكوب فيه عشرين عملة معدنية، وعندنا ارتفاع الماء لما كان بداخل الكوب عشرين عملة معدنية.

لو كان مطلوب توقّع ارتفاع الماء بعد إضافة تلاتين عملة معدنية، هنلاحظ، هنلاحظ إن الفرق بين ارتفاع الماء لما كان بداخل الكوب صفر عملة معدنية، وارتفاع الماء لما كان بداخل الكوب خمس عملات معدنية؛ كان هو نفس الفرق لما كان بداخل الكوب عشر عملات معدنية، ولما كان بداخل الكوب خمس عملات معدنية؛ وأيضًا هو نفس الفرق لما كان بداخل الكوب خمستاشر عملة معدنية، ولما كان بداخل الكوب عشر عملات معدنية، وهكذا. هنلاحظ دايمًا إن الفرق بيكون ثابت، وبالتالي نقدر نتوقع ارتفاع الماء بعد إضافة تلاتين عملة المعدنية.

يعني بداخل الكوب عشرين عملة معدنية، لو عايزين نتوقّع بعد إضافة تلاتين عملة معدنية أخرى؛ يعني لما يكون بداخل الكوب خمسين عملة معدنية الارتفاع هيكون كام، وبما إن الفرق بين ارتفاع الماء بعد إضافة خمس عملات معدنية جديدة دايمًا بيكون ثابت، فنقدر نتوقّع ارتفاع الماء بعد إضافة تلاتين عملة معدنية جديدة؛ يعني لما كان بداخل الكوب خمسين عملة معدنية.

ونقدر نتأكد من التوقّع بإننا نضيف تلاتين عملة معدنية أخرى بداخل الكوب ونقيس ارتفاع الماء، هنلاحظ إننا ممكن نوصل لنفس نتيجة التوقع عن طريق تمثيل البيانات اللي بداخل الجدول في صورة رسومات خطية، وبالتالي نقدر نقول في صفحة جديدة إن الرسومات الخطية، بتكون مفيدة في توقع الأحداث المستقبلية.

لو عايزين نوضح أكتر إزاي هنقدر نستخدم الرسومات الخطية في توقّع الأحداث المستقبلية، هنوضح من خلال مثال، فلو عندنا مثال بالشكل ده، مطلوب نستخدم الرسم الخطي اللي بيوضح العلاقة بين درجة الحرارة بالفهرنهايت ودرجة الحرارة بالسلزيوس، عشان نتوقع درجة الحرارة بالفهرنهايت لما تكون القراءة خمسة وتلاتين درجة سلزيوس. عشان نقدر نتوقع درجة الحرارة بالفهرنهايت لما تكون القراءة خمسة وتلاتين درجة سلزيوس، محتاجين نمدّ الخط اللي بيوضح العلاقة بين درجات الحرارة بالفهرنهايت ودرجات الحرارة بالسلزيوس، ونشوف عند خمسة وتلاتين درجة سلزيوس هيقابل كام درجة فهرنهايت. هنلاحظ من الرسم إن لما كانت درجة الحرارة خمسة وتلاتين درجة سلزيوس كان يقابلها درجة الحرارة خمسة وتسعين درجة فهرنهايت، وبالتالي قدرنا نتوقع درجة الحرارة بالفهرنهايت لما تكون القراءة خمسة وتلاتين درجة سلزيوس باستخدام الرسومات الخطية.

في صفحة جديدة هنشوف مثال آخر، لو عندنا مثال بالشكل ده، يوضح الرسم البياني عدد الطلاب في مدرسةٍ ما على مدار السنوات الماضية. وإذا كان النمط المتكرر مستمر، ما هو عدد الطلاب سنة ألفين وعشرة؟ معنى إن النمط المتكرر مستمر، يعني الشكل النمطي اللي باين قدامنا في السنين من ألفين لألفين وخمسة بيتكرر كل خمس سنين؛ يعني من ألفين وخمسة لألفين وعشرة هيكون نفس الشكل ده، ومن ألفين وعشرة لألفين وخمستاشر هيكون نفس الشكل ده، وهكذا. هنلاحظ إن في سنة ألفين وخمسة كان عدد الطلاب ربعمية طالب، وبالتالي في الخمس سنين، من ألفين وخمسة لألفين وعشرة، هيتكرر النمط بس هيبدأ من عند ربعمية، وبالتالي عشان نقدر نِوجد عدد الطلاب سنة ألفين وعشرة محتاجين نشوف الفرق بين عدد الطلاب سنة ألفين وخمسة وعدد الطلاب سنة ألفين، وهيكون هو نفس الفرق بين عدد الطلاب في سنة ألفين وعشرة وعدد الطلاب سنة ألفين وخمسة.

يبقى هنقول عدد الطلاب سنة ألفين كان ميتين خمسة وسبعين طالبًا، وعدد الطلاب سنة ألفين وخمسة كان ربعمية طالبًا، وبالتالي الفرق بين عدد الطلاب سنة ألفين وخمسة وسنة ألفين هيكون مية خمسة وعشرين طالبًا. وبما إن النمط المتكرر مستمر، يعني النمط الجديد هيبدأ من عند ربعمية، وهيمشي بنفس النمط، يعني الفرق بين عدد الطلاب سنة ألفين وعشرة وعدد طلاب سنة ألفين وخمسة هيكون هو نفس الفرق بين عدد الطلاب سنة ألفين وخمسة وعدد الطلاب سنة ألفين، اللي هو مية خمسة وعشرين طالبًا . وده بسبب إن النمط المتكرر مستمر، يعني نفس النمط بيتكرر كل خمس سنين، وبالتالي لو عايزين نِوجد عدد الطلاب سنة ألفين وعشرة، هنقول إن هو عدد الطلاب سنة ألفين وخمسة زائد مية خمسة وعشرين طالبًا، يعني عدد الطلاب سنة ألفين وعشرة هيساوي، عدد الطلاب سنة ألفين وخمسة كان ربعمية طالبًا زائد مية خمسة وعشرين طالبًا يعني هيساوي خمسمية خمسة وعشرين طالبًا، وبالتالي عدد الطلاب سنة ألفين وعشرة حوالي خمسمية خمسة وعشرين طالبًا.

ويبقى كده قدرنا نتوقع أحداث مستقبلية باستخدام رسم خطي بيمثَّل عن طريق نمط متكرر. وهنلاحظ عندنا من الرسم الخطي إن سبب استخدام خط متقطع إن ما فيش بيانات بين عدد النقاط اللي بتمثّل عدد الطلاب، وبالتالي استخدام خطوط متقطعة هيساعد على قراءة النمط المتكرر من البيانات.

ويبقى في النهاية قدرنا نعرف إزاي هنستخدم الرسم البياني للتنبؤ عن طريق استخدام الرسومات الخطية اللي بتكون مفيدة في توقع الأحداث المستقبلية.