نسخة الفيديو النصية
إذا كان ﺃﺏﺟﺩ يشابه ﻉﺹﺱﻝ، فأوجد قيمة ﺱ.
توضح المعطيات أن المضلعين، أو الشكلين الرباعيين ﺃﺏﺟﺩ و ﻉﺹﺱﻝ متشابهان. لعلنا نتذكر أن للمضلعات المتشابهة خاصيتين رئيسيتين. أولًا: تكون الزوايا المتناظرة متطابقة. وثانيًا: تكون الأضلاع المتناظرة متناسبة.
يمكننا تحديد الرءوس المتناظرة بعضها مع بعض بالنظر في ترتيب الحروف في جملة التشابه. وتذكر المعطيات أن ﺃﺏﺟﺩ يشابه ﻉﺹﺱﻝ، إذن الرأس ﺃ يناظر الرأس ﻉ، والرأس ﺏ يناظر الرأس ﺹ، والرأس ﺟ يناظر الرأس ﺱ، والرأس ﺩ يناظر الرأس ﻝ. وهذا يساعدنا أيضًا في تحديد الأضلاع المتناظرة في المضلعين. فالضلع الذي يصل بين الرأسين ﺃ وﺏ في المضلع الأصغر يناظر الضلع الذي يصل بين الرأسين ﻉ وﺹ في المضلع الأكبر. كما أن الضلع الذي يصل بين الرأسين ﺟ وﺩ في المضلع الأصغر يناظر الضلع الذي يصل بين الرأسين ﺱ وﻝ في المضلع الأكبر.
من ثم يمكننا استخدام حقيقة أن الأضلاع المتناظرة في المضلعات المتشابهة تكون متناسبة لكي نكتب معادلة. وباستخدام زوجي الأضلاع المتناسبة التي حددناها، نحصل على ﺟﺩ على ﺱﻝ يساوي ﺃﺏ على ﻉﺹ. وبالمثل يمكننا كتابة مقلوب هذه المعادلة على الصورة: ﺱﻝ على ﺟﺩ يساوي ﻉﺹ على ﺃﺏ. يمكننا بعد ذلك التعويض بالأطوال أو المقادير المعطاة في الشكلين لكل ضلع من هذه الأضلاع. لدينا ١٥ زائد اثنين ﺱ على ٢٤٦٫٢ يساوي ٧٥ على ١٥٠. ولهذا اخترنا كتابة علاقة التناسب بهذه الطريقة بدلًا من مقلوبها؛ حتى يصبح المجهول ﺱ في بسط الكسر.
والآن يمكن تبسيط الكسر في الطرف الأيمن عن طريق قسمة كل من البسط والمقام على ٧٥ لنحصل على نصف. وهذا يعني أن أطوال أضلاع المضلع الأصغر تساوي نصف أطوال الأضلاع المناظرة لها في المضلع الأكبر. أو العكس من ذلك، أي أن أطوال أضلاع المضلع الأكبر تساوي ضعف أطوال الأضلاع المناظرة لها في المضلع الأصغر.
يمكننا بعد ذلك أن نتناول المسألة من منظور منطقي، أو يمكننا المتابعة في حل المعادلة التي كتبناها. بضرب طرفي المعادلة في ٢٤٦٫٢، نحصل على ١٥ زائد اثنين ﺱ يساوي ٢٤٦٫٢ على اثنين، أو ١٢٣٫١. ولأننا نريد إيجاد قيمة ﺱ، فستكون الخطوة التالية هي طرح ١٥ من طرفي المعادلة، وهو ما يعطينا اثنين ﺱ يساوي ١٠٨٫١. وأخيرًا، يمكننا قسمة طرفي المعادلة على اثنين لنحصل على ﺱ يساوي ٥٤٫٠٥.
إذن، بتذكر أن الأضلاع المتناظرة في المضلعات المتشابهة تكون متناسبة، ثم بكتابة معادلة تتضمن أطوال زوجي الأضلاع المتناظرة، وجدنا أن قيمة المجهول ﺱ تساوي ٥٤٫٠٥.