تستخدم نجوى ملفات تعريف الارتباط لضمان حصولك على أفضل تجربة على موقعنا. معرفة المزيد حول سياسة الخصوصية لدينا.

فيديو: قاعدة مشتقة القسمة

أحمد لطفي

يوضح الفيديو كيفية استخدام قاعدة مشتقة القسمة في إيجاد اشتقاق الدوال المختلفة.

٠٧:٤٩

‏نسخة الفيديو النصية

هنتكلم عن قاعدة مشتقة القسمة، هنفتكر إيه هي قاعدة مشتقة القسمة، وهنشوف إزاي هنقدر نستخدم قاعدة مشتقة القسمة في حل الأمثلة المختلفة.

في البداية لو عندنا مثال بالشكل ده، ص بتساوي تلاتة ناقص أربعة س الكل مقسوم على س تربيع زائد خمسة س ومطلوب إيجاد د ص على د س بتساوي كام. في البداية ممكن نعتبر إن ص عبارة عن ناتج قسمة مقدارين، وممكن نشوفهم إنهم دالتين مختلفتين يعني تلاتة ناقص أربعة س هي دالة هسميها د س، وس تربيع زائد خمسة س هي دالة أخرى هسميها ر س، وبالتالي ص ممكن أكتبها بالشكل ده، ص بتساوي د س على ر س يعني بتساوي تلاتة ناقص أربعة س الكل مقسوم على س تربيع زائد خمسة س. هنفتكر قاعدة مشتقة القسمة هتكون لو عندنا دالة ص بتساوي د س على ر س، فـ مشتقة الدالة ص هتساوي مشتقة الدالة اللي في البسط اللي هي د س مضروبة في الدالة اللي في المقام اللي هي ر س ناقص الدالة اللي في البسط اللي هي د س مضروبة في مشتقة الدالة اللي في المقام اللي هي ر س الكل مقسوم على الدالة اللي في المقام تربيع اللي هي ر س تربيع.

عشان نقدر نعوض في قاعدة مشتقة القسمة محتاجين نوجد مشتقة الدالة د س اللي هي بتساوي تلاتة ناقص أربعة س، ومشتقة الدالة ر س اللي هي بتساوي س تربيع زائد خمسة س، وبالتالي مشتقة الدالة د س هتساوي سالب أربعة، ومشتقة الدالة ر س هتساوي اتنين س زائد خمسة. هنعوض في قاعدة مشتقة القسمة، فهيكون عندنا د ص على د س هتساوي سالب أربعة مضروبة في (س تربيع زائد خمسة س) ناقص (تلاتة ناقص أربعة س) مضروبة في (اتنين س زائد خمسة) الكل مقسوم على (س تربيع زائد خمسة س) الكل تربيع. بالتبسيط هيكون عندنا سالب أربعة س تربيع ناقص عشرين س ناقص ستة س زائد خمستاشر ناقص تمنية س تربيع ناقص عشرين س الكل مقسوم على س تربيع زائد خمسة س الكل تربيع. هنكتب المقدار مرة كمان فهيكون بالشكل ده، وبالتبسيط المقدار هيساوي سالب أربعة س تربيع ناقص عشرين س زائد أربعتاشر س ناقص خمستاشر زائد تمنية س تربيع الكل مقسوم على س تربيع زائد خمسة س الكل تربيع. بالتبسيط د ص على د س هتساوي أربعة س تربيع ناقص ستة س ناقص خمستاشر الكل مقسوم على س تربيع زائد خمسة س الكل تربيع. ويبقى كده قدرنا نوجد د ص على د س للدالة ص بتساوي تلاتة ناقص أربعة س الكل مقسوم على س تربيع زائد خمسة س.

لو هنشوف إزاي هنقدر نطبق قاعدة مشتقة القسمة في مثال آخر، لو عندنا مثال بالشكل ده د س بتساوي جتا س مقسومة على س أس تلاتة، ومطلوب إيجاد د على د س للدالة د س بتساوي كام.

في البداية قاعدة مشتقة القسمة هتكون بالشكل ده، لو عندنا دالة ص بتساوي د س على ر س، وعايزين نوجد د ص على د س، فـ مشتقة الدالة ص هتساوي مشتقة الدالة اللي في البسط اللي هي د س مضروبة في الدالة اللي في المقام اللي هي ر س ناقص الدالة اللي في البسط اللي هي د س مضروبة في مشتقة الدالة اللي في المقام اللي هي ر س الكل مقسوم على الدالة اللي في المقام تربيع اللي هي ر س تربيع.

وبالتالي بالنسبة للمثال اللي عندنا مطلوب إيجاد د على د س للدالة د س، فهتكون، يبقى د على د س للدالة د س هتساوي مشتقة جتا س مضروبة في س أس تلاتة ناقص جتا س مضروبة في مشتقة س أس تلاتة الكل مقسوم على (س أس تلاتة) أس اتنين؛ يعني المقدار هيساوي سالب جا س مضروبة في س أس تلاتة ناقص تلاتة س تربيع مضروبة في جتا س الكل مقسوم على س أس ستة.

باستخراج س تربيع عامل مشترك من البسط، هيكون عندنا س تربيع مضروبة في سالب س في جا س ناقص تلاتة في جتا س الكل مقسوم على س أس ستة، هنختصر س تربيع من البسط مع س أس ستة في المقام، هيتبقى عندنا واحد في البسط وفي المقام س أس أربعة، وبالتالي المقدار هيساوي د على د س للدالة د س هتساوي سالب س مضروبة في جا س ناقص تلاتة في جتا س الكل مقسوم على س أس أربعة. ويبقي كده قدرنا نوجد مشتقة الدالة د س اللي كانت بتساوي جتا س مقسومة على س أس تلاتة.

لو عندنا مثال آخر، مُعطى جدول به قيم س ود س ور س ود شرطة س ور شرطة س، ومُعطى الدالة ق س بتساوي د س مقسومة على تلاتة في ر س، ومطلوب إيجاد ق شرطة تلاتة بتساوي كام؛ يعني مطلوب إيجاد مشتقة الدالة ق س لما س بتساوي تلاتة.

في البداية هنستخدم قاعدة مشتقة القسمة اللي بتكون على الصورة ص بتساوي د س على ر س، يبقى د ص على د س هتساوي مشتقة الدالة اللي في البسط اللي هي د س مضروبة في الدالة اللي في المقام اللي هي ر س ناقص الدالة اللي في البسط اللي هي د س مضروبة في مشتقة الدالة اللي في المقام اللي هي ر س الكل مقسوم على الدالة اللي في المقام تربيع اللي هي ر س تربيع.

بالتعويض في قاعدة مشتقة القسمة ممكن نوجد ق شرطة س بتساوي د شرطة س مضروبة في تلاتة في ر س ناقص د س مضروبة في تلاتة في ر شرطة س الكل مقسوم على تلاتة في ر س الكل تربيع، هنعوض عن س بتلاتة عشان نوجد ق شرطة تلاتة، فهيكون عندنا ق شرطة تلاتة بتساوي د شرطة تلاتة مضروبة في تلاتة في ر تلاتة ناقص د تلاتة مضروبة في تلاتة في ر شرطة تلاتة الكل مقسوم على تلاتة في ر تلاتة الكل أس اتنين.

باستخدام الجدول هنوجد قيم د س لما س بتساوي تلاتة اللي هي كانت بتساوي أربعتاشر، ور س لما س بتساوي تلاتة اللي هي بتساوي اتنين، ود شرطة س لما س بتساوي تلاتة اللي هي بتساوي أربعة وعشرين ور شرطة تلاتة لما س بتساوي تلاتة اللي هي بتساوي سالب ستة؛ وبالتالي ق شرطة تلاتة هتساوي مية أربعة وأربعين ناقص سالب ميتين اتنين وخمسين الكل مقسوم على ستة وتلاتين؛ يعني ق شرطة تلاتة هتساوي تلتمية ستة وتسعين على ستة وتلاتين؛ يعني ق شرطة تلاتة هتساوي حداشر. ويبقى كده قدرنا نوجد قيمة ق شرطة تلاتة.

وفي النهاية نكون عرفنا إزاي نقدر نستخدم قاعدة مشتقة القسمة من خلال الأمثلة المختلفة.