نسخة الفيديو النصية
أوجد طول القطعة المستقيمة أ ب.
عندنا في المثال ده مستوى إحداثي، ومحدَّد عليه نقطتين؛ النقطة أ، والنقطة ب. وعايزين نوجد طول القطعة المستقيمة أ ب. أول حاجة هنحدّد إحداثيات كلًّا من النقطة أ والنقطة ب. بالنسبة للنقطة أ، هنلاقي إن الإحداثي السيني بتاعها هو ستة، والإحداثي الصادي بتاعها هو اتنين. معنى كده إن النقطة أ هي النقطة ستة، واتنين. بعد كده هنحدّد إحداثيات النقطة ب. فهنلاقي الإحداثي السيني للنقطة ب هو ستة، والإحداثي الصادي للنقطة ب هو تمنية. يعني النقطة ب هي النقطة ستة، وتمنية.
بعد كده هنستخدم قانون المسافة بين نقطتين؛ علشان نوجد طول القطعة المستقيمة أ ب. والمسافة بين نقطتين تساوي الجذر التربيعي لـ س اتنين ناقص س واحد الكل تربيع، زائد ص اتنين ناقص ص واحد الكل تربيع. فهنفرض إن النقطة س واحد وَ ص واحد هي النقطة أ. أمَّا النقطة س اتنين وَ ص اتنين، فهنفرضها النقطة ب. فهنعوّض في قانون المسافة بين نقطتين عن س واحد بستة، وعن ص واحد باتنين، وعن س اتنين بستة، وعن ص اتنين بتمنية. فهيبقى عندنا طول القطعة المستقيمة أ ب يساوي الجذر التربيعي لستة ناقص ستة الكل تربيع، زائد تمنية ناقص اتنين الكل تربيع.
بكده هيبقى طول القطعة المستقيمة أ ب يساوي الجذر التربيعي لـ صفر تربيع، زائد ستة تربيع. يعني يساوي الجذر التربيعي لستة وتلاتين. والجذر التربيعي لستة وتلاتين يساوي ستة. فمعنى كده إن طول القطعة المستقيمة أ ب يساوي ست وحدات طول. وبكده يبقى إحنا أوجدنا طول القطعة المستقيمة أ ب، وهو ست وحدات.