فيديو السؤال: تحديد إذا ما كان خطان مستقيمان متوازيين | نجوى فيديو السؤال: تحديد إذا ما كان خطان مستقيمان متوازيين | نجوى

فيديو السؤال: تحديد إذا ما كان خطان مستقيمان متوازيين الرياضيات • الصف الثالث الإعدادي

خطان مستقيمان ميلاهما ٦‏/‏٥ و١٢‏/‏١٠، ويقطعان المحور ﺹ عند نقاط مختلفة. هل الخطان متوازيان؟

٠١:٣٨

نسخة الفيديو النصية

خطان مستقيمان ميلاهما ستة على خمسة و ١٢ على ١٠، ويقطعان المحور ﺹ عند نقاط مختلفة. هل الخطان متوازيان؟

للإجابة عن هذا السؤال، سنبدأ باسترجاع تعريف الخطوط المستقيمة المتوازية. نحن نعلم أن أي خطين يكونان متوازيين إذا كان أحدهما يبعد عن الآخر نفس المسافة ولا يتقاطعان أبدًا. وقد يكون ميلاهما موجبًا أو سالبًا كما هو موضح. أو بدلًا من ذلك، قد يكون كلاهما أفقيًّا أو كلاهما رأسيًّا. ومن ثم، يجب أن يكون أي خطين متوازيين متساويين في الميل أو الانحدار. في هذا السؤال، علمنا أن الخطين ميلاهما هما ستة على خمسة و ١٢ على ١٠. وسنسمي هذين الميلين أو الانحدارين ﻡ واحد وﻡ اثنين، على الترتيب.

لمعرفة إذا ما كان هذان الخطان متوازيين، علينا تحديد إذا ما كان الكسران متكافئين. نلاحظ هنا أن كلًّا من بسط الكسر الثاني ومقامه عدد زوجي. ومن ثم، يمكننا قسمة البسط والمقام على اثنين. ‏١٢ على اثنين يساوي ستة، و ١٠ على اثنين يساوي خمسة. وعليه، فإن الكسر ١٢ على ١٠ مساو للكسر ستة على خمسة.

هذا يعني أن الميلين أو الانحدارين للخطين لدينا متساويان، وبما أن الخطين يقطعان المحور ﺹ عند نقاط مختلفة، فهما غير منطبقين. فالخطوط المنطبقة هي الخطوط التي تقع فوق بعضها. إذن، يمكننا استنتاج أن الإجابة الصحيحة هي: نعم، الخطان متوازيان.

انضم إلى نجوى كلاسيز

شارك في الحصص المباشرة على نجوى كلاسيز وحقق التميز الدراسي بإرشاد وتوجيه من مدرس خبير!

  • حصص تفاعلية
  • دردشة ورسائل
  • أسئلة امتحانات واقعية

تستخدم «نجوى» ملفات تعريف الارتباط لضمان حصولك على أفضل تجربة على موقعنا. اعرف المزيد عن سياسة الخصوصية