فيديو: إيجاد دالة الجهد لحقل اتجاهي في بُعْدَيْنِ

هل يوجد جهد ر(ﺱ، ﺹ) للدالة المتجه د(ﺱ، ﺹ) = (٨ﺱﺹ + ٣) المتجه س + ٤(ﺱ^٢ + ﺹ) المتجه ﺹ؟ إذا كان موجودًا، فاذكر جهدًا واحدًا.

٠٥:٣٤

‏نسخة الفيديو النصية

هل يوجد جهد ر للـ س والـ ص للدالة المتجهة: د س وَ ص تساوي تمنية س ص زائد تلاتة في اتجاه الـ س، زائد أربعة س تربيع زائد ص في اتجاه الـ ص؟ إذا كان موجودًا، فاذكر جهدًا واحدًا.

علشان نعرف إذا كان فيه جهد ر س وَ ص ولّا لأ للدالة، فإحنا بنعتبر إن الدالة اللي مضروبة في اتجاه السينات دي، د واحد س وَ ص. والدالة المضروبة في اتجاه الـ ص، هي د اتنين س وَ ص. ونفاضل دي بالنسبة لاتجاه الـ ص. وهنفاضل دي بالنسبة لاتجاه الـ س.

يبقى هنوجد المشتقة الجزئية للـ د واحد س وَ ص بالنسبة لـ ص. وبعدين نطرحها من مشتقة الجزئية للدالة اتنين س وَ ص بالنسبة للـ س. ولو ساوت الصفر، يبقى معنى كده إن فيه جهد ر للـ س والـ ص.

لمّا هنفاضل د واحد س وَ ص بالنسبة للـ ص، يبقى هتساوي … بالنسبة للـ ص، يبقى معنى كده إن إحنا بنعتبر إن الـ س ده ثابت. يبقى هتبقى تمنية س ص تفاضلها تمنية س. والتلاتة تفاضلها هيبقى صفر. ناقص … الدالة التانية اللي هي أربعة في س تربيع زائد ص. الأربعة ده ثابت هيفضل زي ما هو. الـ س تربيع لمّا هنفاضلها بالنسبة للـ س، هتبقى اتنين س … زائد الـ ص دي بالنسبة للـ س هتبقى ثابت، يبقى معناها زائد صفر.

طيب يبقى كده تمنية س ناقص تمنية س، ده بيساوي صفر. يبقى معنى كده: يوجد جهد. ويبقى هي دي الجزئية الأولى من السؤال.

علشان نوجد جهدًا واحدًا، يبقى هنوجد … ر س وَ ص بتساوي تكامل د واحد س وَ ص بالنسبة للاتجاه اللي مضروبة فيه بالنسبة للـ س، زائد ثابت في الـ ص. لأن هنا هنكامل بالنسبة للـ س، يبقى فيه ثابت هيبقى دالة في ص. لمّا بنيجي نفاضله بالنسبة للـ س، بيبقى قيمته تساوي صفر.

يبقى الـ ر س وَ ص هتساوي التكامل … الدالة اللي هي د واحد س وَ ص، هتبقى تمنية س ص، زائد تلاتة، هنكاملها بالنسبة للـ س؛ زائد الثابت في الـ ص.

لمّا هنكاملها بالنسبة للـ س، يبقى الـ ص دي ثابت. يبقى الـ س تكاملها هيبقى تمنية س تربيع؛ هنزوّد الأُس واحد ونقسم عليه. والـ ص هتفضل زي ما هي. زائد … التلاتة دي عبارة عن، لمّا هنكاملها هتبقى تلاتة س. زائد الثابت في ص. يبقى الـ ر س وَ ص هيساوي أربعة س تربيع ص، زائد تلاتة س، زائد ثابت في المتغير ص.

طيب ما هو الجهد ر س وَ ص ده، لمّا بنفاضله، لازم يدّي لنا الدالة دي في اتجاه الـ س والـ ص. يبقى هنفاضله تاني بالنسبة للـ ص؛ علشان نعرف الجزء اللي في اتجاه الـ ص. هنفاضل الـ ر بالنسبة للـ ص، يبقى هتساوي أربعة س تربيع ده هيعتبر ثابت. والـ ص لمّا هنفاضله، هتبقى بواحد. زائد … تلاتة س لمّا هنفاضلها بالنسبة للـ ص، هتبقى بصفر. زائد … تفاضل الثابت بالنسبة للـ ص، يبقى ث شرطة ص. ده المفروض يساوي الجزء اللي في اتجاه الـ ص. يعني هيساوي أربعة في، س تربيع زائد الـ ص.

لمّا هنقارن هنلاقي هنا فيه أربعة س تربيع، وأربعة س تربيع، ودي أربعة في ص؛ يبقى دي اللي هتبقى تساوي ث شرطة للـ ص. تساوي أربعة ص.

هنكامل الطرفين بالنسبة لـ ص، يبقى الثابت اللي هو الدالة في ص هيساوي … أربعة ص لمّا هنكاملها، هتبقى اتنين ص تربيع، زائد ثابت عام. هنعتبر إن إحنا هناخد جهد واحد بس، فهنعتبر إن الـ ث هيساوي صفر. يبقى معنى كده إن الـ ر س وَ ص هتساوي … التكامل اللي أوجدناه، اللي هو كان ده، وهنعوّض في الثابت، الدالة في الـ ص باتنين ص تربيع. يبقى الـ ر س وَ ص هيساوي أربعة س تربيع ص، زائد تلاتة س، زائد اتنين ص تربيع. ويبقى ده الجهد المطلوب.

تستخدم نجوى ملفات تعريف الارتباط لضمان حصولك على أفضل تجربة على موقعنا. معرفة المزيد حول سياسة الخصوصية لدينا.