نسخة الفيديو النصية
مستطيل طوله يزيد عن عرضه بمقدار ٢٦ سنتيمترًا. إذا كانت مساحته ١٢٠ سنتيمترًا مربعًا، فأوجد محيطه.
حسنًا، لدينا هنا مستطيل. وسنشير إلى عرضه بـ ﺽ. إننا لا نعرف قياس الطول أو العرض. ولكننا نعرف بعض المعلومات عن الطول. الطول يزيد عن العرض بمقدار ٢٦ سنتيمترًا. ويمكننا كتابة ذلك على صورة ﺽ زائد ٢٦. كما نعلم أن مساحة المستطيل تساوي ١٢٠ سنتيمترًا مربعًا. إننا نعلم أن مساحة المستطيل تساوي حاصل ضرب الطول في العرض. المساحة تساوي ١٢٠. والطول يساوي العرض زائد ٢٦. والعرض هو ﺽ.
يمكننا توزيع ﺽ؛ حيث نضرب ﺽ في ﺽ؛ ما يعطينا ﺽ تربيع. وﺽ في ٢٦ يساوي ٢٦ﺽ. توضح المعادلة الجديدة أن ١٢٠ يساوي ﺽ تربيع زائد ٢٦ﺽ. ولإيجاد قيمة ﺽ، يمكننا التعامل مع ذلك على أنه معادلة. ويمكننا حلها بطرح ١٢٠ من كلا طرفيها. صفر يساوي ﺽ تربيع زائد ٢٦ﺽ ناقص ١٢٠.
لإيجاد قيمة ﺽ، سنحلل هذه المعادلة. وسيكون الحد الأول في كلا التعبيرين هو ﺽ. إننا نحتاج هنا إلى عاملين حاصل ضربهما يساوي سالب ١٢٠، ومجموعهما يساوي موجب ٢٦. لدينا سالب واحد في ١٢٠، وموجب واحد في سالب ١٢٠، وسالب اثنين في ٦٠، وموجب اثنين في سالب ٦٠، وسالب ثلاثة في ٤٠، وثلاثة في سالب ٤٠، وسالب أربعة في ٣٠، وأربعة في سالب ٣٠. يمكننا الاستمرار في ذلك، ولكن تذكر أن الهدف هو إيجاد عاملين مجموعهما يساوي موجب ٢٦. لدينا سالب أربعة زائد ٣٠ يساوي ٢٦.
هذا يعني أنه يمكننا التعويض بسالب أربعة وموجب ٣٠ في التعبيرين لدينا. تذكر أن هدفنا النهائي هو إيجاد المحيط. ولكن لإيجاد المحيط، علينا معرفة قياسي العرض والطول. نحن على وشك إيجاد العرض. سنساوي كلًّا من هذين الحدين بصفر. لدينا ﺽ ناقص أربعة يساوي صفرًا. ونضيف أربعة إلى كلا الطرفين. وبذلك، نجد أن ﺽ يساوي أربعة. ولدينا ﺽ زائد ٣٠ يساوي صفرا. سنطرح ٣٠ من كلا الطرفين. ومن ثم، نحصل على ﺽ يساوي سالب ٣٠.
إننا نتحدث هنا عن طول. وهذا يعني أن ﺽ يساوي سالب ٣٠ ليس حلًّا ممكنًا. والحل الوحيد الممكن هو ﺽ يساوي أربعة. هذا يعني أن عرض هذا المستطيل يساوي أربعة سنتيمترات. وهذا يعني أن الطول يساوي أربعة زائد ٢٦. إذن، الطول يساوي ٣٠ سنتيمترًا.
إننا نعلم أن محيط المستطيل يساوي اثنين في الطول زائد العرض. وهذا هنا يساوي اثنين في ٣٠ زائد أربعة. واثنين في ٣٤ يساوي ٦٨. تذكر أن المحيط هو المسافة حول الشكل. وهذه المسافة هي قياس طول. هذا يعني أن الوحدة هي السنتيمتر، وليس السنتيمتر المربع. إذن، المسافة حول هذا المستطيل تساوي ٦٨ سنتيمترًا.