نسخة الفيديو النصية
أي من مجموعات الأعداد التالية يمكن أن تكون أطوال أضلاع مثلث: أ) خمسة، اثنان، ثمانية؛ أم ب)
اثنان، خمسة، ستة؛ أم ج) خمسة، ثلاثة، ثمانية؟
لكي نتمكن من حل هذه المسألة، ننظر إلى هذه العلاقة. وتقول هذه العلاقة: إن مجموع طولي أي ضلعين من المثلث يكون أكبر من طول الضلع الثالث. ويمكننا استخدام هذه العلاقة لمساعدتنا في تحديد أي من مجموعات الأعداد لدينا يمكن أن تشكل
مثلثًا.
ما سنفعله هو أننا سنفحص كل مجموعة على حدة. ولكي نفعل هذا، سنقارن مجموع طولي أي ضلعين مع طول الضلع الثالث. سنبدأ بالمجموعة (أ). لدينا هنا خمسة، واثنان، وثمانية، وسنرمز إليها بـ 𝑎، و𝑏، و𝑐. سنبدأ بـ 𝑎 زائد 𝑏 أكبر من 𝑐؛ لأنه كما قلنا، مجموع طولي أي ضلعين في المثلث أكبر من طول الضلع
الثالث.
ويعطينا ذلك: خمسة زائد اثنين أكبر من ثمانية. حسنًا، لدينا إذن سبعة أكبر من ثمانية. وهذا ليس صحيحًا؛ لذا نقول: إن علاقتنا لا تتحقق. والآن، أصبحنا نعرف أن المجموعة (أ) لا يمكن أن تمثل أطوال أضلاع أي مثلث. لأنه إذا كان مجموع طولي ضلعين ليس أكبر من طول الضلع الثالث، فنفهم من ذلك أن هذه الأضلاع لا
يمكن أن تكون مثلثًا.
والآن، سننظر إلى المجموعة (ب). لدينا اثنان، وخمسة، وستة. مرة أخرى، ننظر إلى 𝑎 زائد 𝑏 أكبر من 𝑐. فنحصل على: اثنان زائد خمسة أكبر من ستة. إذن، لدينا سبعة أكبر من ستة. وهذا صحيح. حسنًا، رائع! والآن، سنقارن بين مجموع طولي ضلعين آخرين وطول الضلع الثالث. هذه المرة لدينا 𝑎 زائد 𝑐 أكبر من 𝑏، ما يعطينا اثنين زائد ستة أكبر من خمسة. حسنًا! رائع! هذا أيضًا صحيح؛ لأن ثمانية أكبر من خمسة.
هكذا نكون قد أجرينا مقارنتين، وكلتاهما صحيحتان. والآن، ما علينا فعله هو إجراء المقارنة الأخيرة. هذه المرة لدينا 𝑏 زائد 𝑐 أكبر من 𝑎، ما يعطينا خمسة زائد ستة أكبر من اثنين. لذا، سنحصل على: 11 أكبر من اثنين، وهذا مرة أخرى صحيح. وإذ إن مجموع طولي أي ضلعين في المثلث أكبر من طول الضلع الثالث، فيمكننا القول: إن المجموعة (ب)
يمكن أن تمثل أطوال أضلاع مثلث.
حسنًا، فلننتقل الآن إلى المجموعة (ج). لدينا هنا خمسة، وثلاثة، وثمانية. مرة أخرى، سنرمز لعناصرها بـ 𝑎، و𝑏، و𝑐. وكما فعلنا من قبل، سنبدأ بـ 𝑎 زائد 𝑏 أكبر من 𝑐. وسنحصل على: خمسة زائد ثلاثة أكبر من ثمانية. وهذا في الواقع خطأ؛ لأن ثمانية ليس أكبر من ثمانية. فثمانية يساوي ثمانية. لذا، يمكننا القول: إن المجموعة (ج) لا يمكن أن تمثل أطوال أضلاع مثلث.
ومن ثم، للإجابة عن هذه المسألة، نقول: إن المجموعة الوحيدة التي يمكن أن تمثل أطوال أضلاع مثلث
هي المجموعة (ب)، وهي تلك المكونة من الأعداد: اثنين، وخمسة، وستة.